可信赖机器学习研究的图谱
1. 引言
随着机器学习在各个领域的广泛应用,可信赖性成为了一个至关重要的议题。可信赖机器学习(Trustworthy Machine Learning, TML)旨在确保机器学习模型在各种条件下都能安全、可靠地运行。本文将深入探讨可信赖机器学习的基本概念、研究领域、关键成果及未来趋势。
2. 可信赖机器学习的基本概念
可信赖机器学习的核心目标是确保机器学习模型在面对各种挑战时仍能保持性能和可靠性。具体而言,它涵盖以下几个方面:
- 公平性 :模型应避免对特定群体产生偏见,确保所有用户都能得到公正的对待。
- 透明性 :模型的决策过程应易于理解和解释,以便用户能够信任其输出。
- 隐私保护 :在训练和推理过程中,模型应保护用户的隐私数据,防止泄露。
- 鲁棒性 :模型应具备抵抗对抗攻击和其他形式干扰的能力。
- 可解释性 :模型应能够提供清晰的解释,说明其为何做出特定决策。
2.1 公平性
公平性是确保机器学习模型不会对某些群体产生不利影响的关键。常见的公平性度量包括:
度量 | 描述 |
---|---|
组间公平性 |