社区感知中心性和经典中心性度量的相关性
1 引言
在复杂网络分析中,识别有影响力的节点对于加速或减缓传播过程至关重要。为此,已提出了多种经典中心性度量,这些度量依赖于不同的拓扑属性,如度中心性、介数中心性、接近中心性等。这些度量可以分为两大类:局部度量和全局度量。局部度量使用节点邻域中的信息,而全局度量则收集整个网络的信息。
近年来,社区感知中心性度量应运而生。这类度量方法利用网络的社区结构来识别有影响力的节点,能够更准确地反映节点在网络中的实际作用。社区感知中心性度量与传统中心性度量的一个关键区别在于,前者区分了社区内部链接和社区外部链接。本文将探讨这两种度量方法在复杂网络中的一致性和差异性。
2 研究方法
为了比较社区感知中心性度量与传统中心性度量的相关性,我们选取了来自不同领域的五十个真实世界网络进行研究。这些网络涵盖了社交网络、生物网络、技术和信息网络等多个领域。每个网络的节点和边数量、密度、平均度等基本特征各不相同,这有助于我们全面了解不同类型的网络中两种度量方法的表现。
2.1 数据集选择
数据集 | 类型 | 节点数 | 边数 | 平均度 |
---|---|---|---|---|
社交网络 | 4,039 | 88,234 | 43.7 | |