18、社区感知中心性和经典中心性度量的相关性

社区感知中心性和经典中心性度量的相关性

1 引言

在复杂网络分析中,识别有影响力的节点对于加速或减缓传播过程至关重要。为此,已提出了多种经典中心性度量,这些度量依赖于不同的拓扑属性,如度中心性、介数中心性、接近中心性等。这些度量可以分为两大类:局部度量和全局度量。局部度量使用节点邻域中的信息,而全局度量则收集整个网络的信息。

近年来,社区感知中心性度量应运而生。这类度量方法利用网络的社区结构来识别有影响力的节点,能够更准确地反映节点在网络中的实际作用。社区感知中心性度量与传统中心性度量的一个关键区别在于,前者区分了社区内部链接和社区外部链接。本文将探讨这两种度量方法在复杂网络中的一致性和差异性。

2 研究方法

为了比较社区感知中心性度量与传统中心性度量的相关性,我们选取了来自不同领域的五十个真实世界网络进行研究。这些网络涵盖了社交网络、生物网络、技术和信息网络等多个领域。每个网络的节点和边数量、密度、平均度等基本特征各不相同,这有助于我们全面了解不同类型的网络中两种度量方法的表现。

2.1 数据集选择

数据集 类型 节点数 边数 平均度
Facebook 社交网络 4,039 88,234 43.7
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值