基于 GoT 和 WKP 的节点及边中心性
1. 引言
现实世界中的复杂系统可以被建模为由节点通过边连接的同质或异质图。节点和边的重要性通过一组称为中心性的度量来正式描述,这些度量通常用于研究小规模的图。随着数字数据集的激增,拥有数十亿节点和边的巨大图逐渐涌现。因此,我们需要更加高效、轻量级的算法来计算节点和边的中心性。本文将重点介绍两种新的算法:Game of Thieves (GoT) 和 Weighted Edge Random Walks-K Path (WERW-Kpath),并探讨它们在黑手党网络中的应用。
2. 传统中心性度量的局限性
传统的中心性度量方法,如度、节点和边的介数、接近度和聚类系数,在小规模网络中表现良好。然而,随着网络规模的增长,这些度量的计算复杂度急剧增加,导致计算时间过长,难以应用于大规模网络。因此,研究者们一直在寻找更加高效的替代方案。
3. GoT 和 WERW-Kpath 算法概述
3.1 Game of Thieves (GoT)
GoT 算法是一种基于贪心策略的中心性度量方法。它通过模拟多个“小偷”在网络中移动,每个小偷的目标是获取尽可能多的资源(例如钻石)。通过记录每个节点被访问的次数,GoT 可以有效地评估节点的重要性。具体步骤如下:
- 初始化:为每个节点分配一定数量的资源(如钻石)。
- 小偷移动:每个小偷从一个随机节点开始,沿着边移动,尝试获取更多资源。
- 计算中心性:根据每个节点被访问的次数,计算其中心性值。