基于对数极坐标频率索引的鲁棒音频水印技术
在音频水印领域,如何让水印在各种攻击下仍能稳定存在是一个关键问题。本文将介绍一种基于对数极坐标频率索引的鲁棒音频水印方法,深入探讨其原理、算法及实验结果。
1. 对数极坐标映射与平均傅里叶幅度(AFM)
在攻击过程中,幅度缩放几乎不可避免,因此我们选择了一种基于相关性的水印策略,它能够抵抗幅度缩放。通过对归一化频率轴应用对数变换,即使在音高缩放后,基于相关性的检测方法仍能有效工作。
我们提出了一种基于相关性的音频水印方法,对归一化频率索引应用离散对数极坐标映射。宿主特征是对数极坐标频率索引上的平均傅里叶幅度(AFM)。
由于信号是离散形式,式(3)中的对数极坐标映射(LPM)不能直接实现。我们设计了适用于离散时间信号的LPM。给定信号 $s = [s_1 \cdots s_N]$,对其进行全局傅里叶变换,得到傅里叶幅度 $S(f)$,其中 $-N/2 \leq f \leq N/2$。选择部分归一化频率索引 $[d\cdot N, 2d\cdot N]$($0 < d < 0.25$),并在该频率区间应用LPM。该区间内的所有频率被映射到一个更小的区间 $[0, M - 1]$,其中 $M$ 是用户指定的随机数。
对数极坐标映射公式如下:
$r = \lfloor\log_a\frac{f}{R}\rfloor + M/2$,$f \in [d \cdot N, 2d \cdot N]$
$a = 2^{1/M}$
$R = \sqrt{2d \cdot N}$
AFM的计算公式为:
$AFM(r) = \frac{1}{(f_