印刷与扫描操作建模及新型扩频水印系统研究
印刷与扫描操作建模
在印刷和扫描操作中,噪声的存在会对图像产生影响。为了更好地模拟这些操作,我们需要对不同类型的噪声进行建模。
- 确定与输入无关的噪声
- 为了确定扫描仪中与输入图像无关的噪声,我们对图像进行n次扫描,生成图像$I_1, I_2, …, I_n$。通过公式$ \overline{I}=\frac{I_1 + I_2 + … + I_n}{n} $计算扫描图像的平均值$\overline{I}$,它展示了扫描仪在平均状态下对图像$I$的处理行为。
- 为了对与输入无关的噪声进行建模,我们首先使用提取的样本计算噪声的均值和标准差。标准差通过公式$ sd(I)=\frac{std(I_1 - \overline{I}) + std(I_2 - \overline{I}) + … + std(I_n - \overline{I})}{n} $计算。根据期望的线性性质,可以证明噪声的均值为零。
- 对k个图像重复上述操作,我们将得到k个标准差。由于这些标准差彼此不同,我们可以将它们视为一个随机变量的样本。通过卡方概率测试,我们发现这些样本服从对数正态分布,参数为m = 0.739和v = 0.269。
- 为了找到与输入无关的噪声,我们计算扫描图像与平均图像的差值,并将这些差值视为噪声样本。再次使用卡方概率测试,确定噪声分布为逻辑函数,其概率密度函数(PDF)定义为:
[ f(x; \mu, s)=\frac{exp(-\frac{x - \mu}{s})}{s[1 + exp(-\frac{x