基于小波的水印嵌入失真性能分析及多水印模型研究
1. 小波水印嵌入失真性能分析
在数字水印领域,小波变换是一种常用的技术。我们来探讨基于小波的水印嵌入失真性能分析。
1.1 直接修改示例
考虑直接修改算法的特定情况,修改值 $\Delta$ 是小波系数的直接函数,即 $\Delta_{m,n} = \alpha C_{m,n}W_{m,n}$。由此,均方误差(MSE)$P_p$ 可以表示为:
$P_p \propto \sum_{k=1}^{l} |C(k)|^2$
其中,$C(k)$ 是被选择用于水印嵌入的系数,$l$ 是这些选定系数的数量。
不同子带(如 LL3、LH3、HL3、HH3、LH2、HL2 等)在直接修改时,MSE 与能量和之间存在一定的关系。使用了六种不同的小波核,分别是 Haar、D - 4、D - 6、D - 8、D - 10 和 D - 16 进行实验。以下是不同子带在直接修改时 MSE 与能量和的关系表格:
| 子带 | 小波核 | MSE 与能量和关系 |
| ---- | ---- | ---- |
| LL3 | Haar、D - 4 等 | 呈现特定的关联趋势 |
| LH3 | Haar、D - 4 等 | 呈现特定的关联趋势 |
| HL3 | Haar、D - 4 等 | 呈现特定的关联趋势 |
| HH3 | Haar、D - 4 等 | 呈现特定的关联趋势 |
| LH2 | Haar、D - 4 等 | 呈现特定的关联趋势 |
| HL2 | Haar、D - 4 等 | 呈现特定的关联趋势 |