算法网课笔记(一)——复杂度分析

这篇博客主要介绍了数据结构与算法之美课程中的复杂度分析,包括时间复杂度的O记法,如O(1), O(logn), O(nlogn), O(m+n), O(m*n)等,并讲解了空间复杂度、最好、最坏、平均及均摊时间复杂度的概念。此外,博主提到了复杂度分析的重要性以及如何分析代码的时间复杂度,特别强调了在特定条件下的均摊时间复杂度分析方法。" 126352977,14807159,理解Web帧动画与animate.css使用,"['前端开发', 'CSS', '动画', 'Web开发', '过渡动画']

课程来源

极客时间——数据结构与算法之美(王争)

概述

数据结构:一组数据的存储结构
算法:操作数据的一组方法
数据结构为算法的服务,算法要作用在特定的数据结构上
复杂度分析:算法时间和资源效率的考量,很重要

课程内容总览:
10个数据结构:数组,链表,栈、队列、散列表、二叉树、堆、跳表、图、Trie数
10个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法

复杂度分析

事后统计法的缺点:1.测试结果依赖测试环境;2.测试结果受数据规模影响大
复杂度计算过程:
假设每行代码执行时间都是unit_time,统计所有代码执行的次数,再取数量级即可
所有代码的执行时间T(n)与每行代码的执行次数n成正比,即下列公式
T(n)=O( f(n) )

大O时间复杂度表示法:
表示代码执行时间随数据规模增长的变化趋势,也叫渐进时间复杂度(asymptotic time complexity,简称时间复杂度)

如何分析代码的时间复杂度:
1.只关注循环执行次数最多的一段代码
2.加法法则,总复杂度等于量级最大的那段代码的复杂度
3.乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度乘积

常见复杂度量级
在这里插入图片描述
其中:只有O(2^n)和 O(n!)是非多项式量级
NP问题:时间复杂度为非多项式量级的算法问题(Non-Deterministic Polynomial,非确定多项式)

O(1)

算法中不存在循环、递归语句,其复杂度即O(1)

O(logn)、O(nlogn)

logn的底数不一定是2,因为任何数为底的对数,都可以通过分离常量来变成C*log2(n)的形式
nlogn就是将O(logn)的代码执行n次的算法,如归并排序,快速排序的时间复杂度都是O(nlogn)

 i=1;
 while (i <= n)  {
   
   
   i = i * 2;
 }

 i=1;
 while (i <= n)  {
   
   
   i = i * 3;
 }

O(m+n)、O(m*n)

当无法判断2个循环的规模,哪一个比较大时,加法规则(max的那个规则)就失效,但是乘法规则仍然适用

int cal(int m, int n) {
   
   
  int sum_1 = 0;
  int i = 1;
  for 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值