排序二叉树

本文介绍了一个简单的二叉搜索树的实现方法,并演示了如何通过递归方式完成升序与降序的元素展示。该程序允许用户输入一组整数并自动构建二叉搜索树,最后以两种不同顺序展示树中的元素。
#include <iostream>
#include <stdlib.h>

using namespace std;

typedef int Elemtype;
struct TNode {
Elemtype data;
struct TNode *lChild, *rChild;
};
typedef struct Head {
TNode *root;
} *Tree;

//函数声明
Tree init();
TNode * initNode();
void displayDESC(TNode *);
void add(Tree , Elemtype);
void displayASC(TNode *);

int main()
{
Tree tree = init();
int iSize;
Elemtype insertValue;
cout << "请输入要插入结点数:" << endl;
cin >> iSize;
for(int i = 0; i < iSize; i++) {
cin >> insertValue;
add(tree , insertValue);
}
cout << "排序后的树为(从小到大):" << endl;
displayDESC(tree->root);
cout << endl;
cout << "排序后的树为(从大到小):" << endl;
displayASC(tree->root);
return 0;
}

//初始化一棵树
Tree init() {
Tree t = (Tree)malloc(sizeof(Head));
t->root = NULL;
return t;
}

//初始化一个树结点
TNode * initNode() {
TNode *t = (TNode *)malloc(sizeof(TNode));
t->lChild = NULL;
t->rChild = NULL;
return t;
}

//从小到大展示树中所有元素
void displayDESC(TNode *root) {
if(root == NULL) {
return;
}
displayDESC(root->lChild);
cout << root->data << " ";
displayDESC(root->rChild);
}

//从大到小展示树中所有元素
void displayASC(TNode *root) {
if(root == NULL) {
return;
}
displayASC(root->rChild);
cout << root->data << " ";
displayASC(root->lChild);
}

//向树中添加元素结点
void add(Tree tree , Elemtype value) {
//如果没有指向根结点的指针,直接返回
if(tree == NULL) {
return;
}

//初始化要插入的数据为一个树结点
TNode *t = initNode();
t->data = value;

//如果没有根结点,把要插入的结点当作根结点插入
if(tree->root == NULL) {
tree->root = t;
return;
}

//将要插入的点与树中的各结点值进行比较,小的放左树,大的放右树
TNode *tCurr = tree->root;

while(tCurr != NULL) {
if(t->data <= tCurr->data) {
if(tCurr->lChild != NULL) {
tCurr = tCurr->lChild;
continue;
} else {
tCurr->lChild = t;
break;
}
} else {
if(tCurr->rChild != NULL) {
tCurr = tCurr->rChild;
continue;
} else {
tCurr->rChild = t;
break;
}
}
}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值