论文解读:基于图神经网络与蛋白质接触图的药靶亲和力预测(二)2021SC@SDUSC

该论文探讨了使用图神经网络(GNN)和蛋白质接触图预测药物-靶标亲和力的方法。研究中,通过比较不同模型架构、超参数设置(如dropout概率和池化方法)以及特征(如PSSM)的影响,发现三层GCN模型在描述蛋白质时表现最优。实验结果显示,当dropout概率为0.2时,模型的MSE值最低,性能最佳。此外,PSSM特征对于提高蛋白质描述准确性和预测性能至关重要。与DeepDTA等方法相比,提出的三层模型在多个评价指标上展现出更优的预测和泛化性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文解读:基于图神经网络与蛋白质接触图的药靶亲和力预测(二)2021SC@SDUSC
Drug–target affinity prediction using graph neural

network and contact maps

文章采用的验证指标:
CI

CI主要用于计算分析中预测值与真实值之间的区别

其中bx为较大亲和dx的预测值,by为较小亲和dy的预测值,Z为归一化常数;h(x)为阶跃函数(前面说分析真实值与预测值与公式中只有预测值带入有点矛盾,但是字面意思是一致性,那么肯定是越大越好)

MSE

MSE也是衡量预测值和真实值之间差的公共度量。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uJ14KwyX-1636443613201)(C:\Users\93108\AppData\Roaming\Typora\typora-user-images\image-20211021172422436.png)]

Pearson相关系数

皮尔森相关系数也用于进行性能比较:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芜湖大司码丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值