Metropolis - Hastings算法与Gibbs采样器深度解析
1. Metropolis - Hastings算法的接受率问题
在Metropolis - Hastings算法中,接受率是一个关键指标。接受率过低时,算法可能会错过目标函数中重要但孤立的模式。不过,从计算时间的角度来看,低接受率除了意味着需要更多的模拟次数外,并不是一个严重的问题,因为它明确表明需要进行更多的模拟。可以使用有效样本量作为收敛指标来判断是否需要增加模拟次数。
例如,在图中所示的三个随机游走Metropolis - Hastings算法中,接受率分别为0.9832、0.7952和0.1512。从直方图拟合情况来看,中等接受率的算法表现较好,而最低接受率的算法仍然比最高接受率的算法表现更佳。
为了避免接受率“过高”或“过低”,Roberts等人(1997)建议,对于高维模型,使用接受率接近1/4的工具分布;对于一维或二维模型,使用接受率等于1/2的工具分布。但这一规则并非普遍适用,它主要是针对高斯环境设计的。
1.1 示例分析
在某些情况下,算法可能无法达到建议的接受率。例如,在某个Metropolis - Hastings算法中,接受概率始终等于1,但由于提议分布包含当前值,链中会有相同的值连续出现,从而存在一个隐式的接受(或更新)率,该率为0.1805,远低于0.25的目标,并且该算法难以通过简单修改(如考虑当前模型周围更多的替代移动)来达到这个目标接受率。
1.2 练习题
以下是一些相关的练习题:
- 练习6.7 :
- a. 以Be(2.7,