哈希表构建与算法实现

37、编写一个程序,构建一个使用二次探测开放寻址法的哈希表。

示例程序QuadraticProbing实现了一个使用二次探测开放寻址法的哈希表。

38、编写一个程序,构建一个使用双重散列开放寻址法的哈希表。

示例程序 DoubleHashing 实现了一个使用双重散列开放寻址法的哈希表。

39、编写一个程序,构建一个使用有序二次探测开放寻址法的哈希表。

示例程序 OrderedQuadraticHashing

实现了一个使用 有序二次探测开放寻址法 的哈希表。

40、编写一个实现原始递归阶乘算法的程序。

以下是一个递归阶乘算法:

Integer: Factorial(Integer: n) {
    If (n == 0) Then Return 1;
    Return n * Factorial(n - 1);
}
End Factorial

首先,若输入值 n 等于 0,算法返回 1,对应阶乘函数定义的第一个方程;否则,若输入不为 0,算法返回 n 乘以 n - 1 的阶乘,对应阶乘函数定义的第二个方程。

41、编写一个实现汉诺塔算法的程序。结果应该是一系列移动步骤,格式为 A→B,表示将最上面的圆盘从 A 柱移动到 B 柱。例如,移动三个圆盘的结果是:A→B A→C B→C A→B C→A C→B A→B

以下是使用 Python 实现汉诺塔算法并输出移动步骤的代码:

def tower_of_hanoi(n, from_peg, to_peg, other_peg):
    if n == 1:
        print(f'{from_peg}→{to_peg}', end=' ')
        return
    tower_of_hanoi(n - 1, from_peg, other_peg, to_peg)
    print(f'{from_peg}→{to_peg}', end=' ')
    tower_of_hanoi(n - 1, other_peg, to_peg, from_peg)

# 示例:移动三个圆盘
n = 3
print(f'移动 {n} 个圆盘的步骤:')
tower_of_hanoi(n, 'A', 'B', 'C')

这段代码定义了一个递归函数 tower_of_hanoi ,它接受圆盘数量 n 以及三个柱子的标识作为参数。函数会根据汉诺塔算法的逻辑递归地输出移动步骤。

42、编写一个程序,解决汉诺塔难题,然后通过图形化绘制圆盘在柱子之间的移动来展示移动步骤。

当用户点击按钮时,程序应解决汉诺塔问题,构建一个 `Move` 对象列表来表示解决方案。然后启动一个计时器,使用列表中的 `Move` 项为 `Disk` 对象创建移动点,并使用 `Disk` 对象的 `Move` 和 `Draw` 方法来移动和绘制圆盘。

此外,可使用三个栈来模拟汉诺塔问题,每个栈代表一个柱子,用数字表示圆盘的半径。

具体的代码实现需要根据使用的编程语言来完成。

43、编写一个绘制科赫雪花的程序。

科赫雪花绘制算法说明

示例程序 KochSnowflake 可绘制科赫雪花。

绘制科赫曲线的算法

算法定义如下:

DrawKoch(Integer: depth, Point: p1, Float: angle, Float: length)

算法逻辑

  • depth 0 ,则:
  • 算法直接从点 p1 开始,沿 angle 方向绘制长度为 length 的线段。

  • depth 大于 0 ,则:

  • 算法找到点 pt2 pt3 pt4
  • 从点 pt1 开始,沿 angle 方向绘制长度为原长度三分之一的线段。
  • 从新端点 pt2 左转60度 ,绘制另一段原长度三分之一的线段。
  • 从新端点 pt3 右转120度 (即比原角度大60度),绘制另一段原长度三分之一的线段。
  • 从端点 pt4 以原角度绘制原长度三分之一的线段。
  • 上述过程会递归调用 DrawKoch 四次。

科赫雪花的绘制方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值