37、编写一个程序,构建一个使用二次探测开放寻址法的哈希表。
示例程序QuadraticProbing实现了一个使用二次探测开放寻址法的哈希表。
38、编写一个程序,构建一个使用双重散列开放寻址法的哈希表。
示例程序 DoubleHashing 实现了一个使用双重散列开放寻址法的哈希表。
39、编写一个程序,构建一个使用有序二次探测开放寻址法的哈希表。
示例程序 OrderedQuadraticHashing
实现了一个使用 有序二次探测开放寻址法 的哈希表。
40、编写一个实现原始递归阶乘算法的程序。
以下是一个递归阶乘算法:
Integer: Factorial(Integer: n) {
If (n == 0) Then Return 1;
Return n * Factorial(n - 1);
}
End Factorial
首先,若输入值 n
等于 0,算法返回 1,对应阶乘函数定义的第一个方程;否则,若输入不为 0,算法返回 n
乘以 n - 1
的阶乘,对应阶乘函数定义的第二个方程。
41、编写一个实现汉诺塔算法的程序。结果应该是一系列移动步骤,格式为 A→B,表示将最上面的圆盘从 A 柱移动到 B 柱。例如,移动三个圆盘的结果是:A→B A→C B→C A→B C→A C→B A→B
以下是使用 Python 实现汉诺塔算法并输出移动步骤的代码:
def tower_of_hanoi(n, from_peg, to_peg, other_peg):
if n == 1:
print(f'{from_peg}→{to_peg}', end=' ')
return
tower_of_hanoi(n - 1, from_peg, other_peg, to_peg)
print(f'{from_peg}→{to_peg}', end=' ')
tower_of_hanoi(n - 1, other_peg, to_peg, from_peg)
# 示例:移动三个圆盘
n = 3
print(f'移动 {n} 个圆盘的步骤:')
tower_of_hanoi(n, 'A', 'B', 'C')
这段代码定义了一个递归函数 tower_of_hanoi
,它接受圆盘数量 n
以及三个柱子的标识作为参数。函数会根据汉诺塔算法的逻辑递归地输出移动步骤。
42、编写一个程序,解决汉诺塔难题,然后通过图形化绘制圆盘在柱子之间的移动来展示移动步骤。
当用户点击按钮时,程序应解决汉诺塔问题,构建一个 `Move` 对象列表来表示解决方案。然后启动一个计时器,使用列表中的 `Move` 项为 `Disk` 对象创建移动点,并使用 `Disk` 对象的 `Move` 和 `Draw` 方法来移动和绘制圆盘。
此外,可使用三个栈来模拟汉诺塔问题,每个栈代表一个柱子,用数字表示圆盘的半径。
具体的代码实现需要根据使用的编程语言来完成。
43、编写一个绘制科赫雪花的程序。
科赫雪花绘制算法说明
示例程序 KochSnowflake 可绘制科赫雪花。
绘制科赫曲线的算法
算法定义如下:
DrawKoch(Integer: depth, Point: p1, Float: angle, Float: length)
算法逻辑
- 若
depth
为 0 ,则: -
算法直接从点
p1
开始,沿angle
方向绘制长度为length
的线段。 -
若
depth
大于 0 ,则: - 算法找到点
pt2
、pt3
和pt4
。 - 从点
pt1
开始,沿angle
方向绘制长度为原长度三分之一的线段。 - 从新端点
pt2
向 左转60度 ,绘制另一段原长度三分之一的线段。 - 从新端点
pt3
向 右转120度 (即比原角度大60度),绘制另一段原长度三分之一的线段。 - 从端点
pt4
以原角度绘制原长度三分之一的线段。 - 上述过程会递归调用
DrawKoch
四次。