cicd6pipeline
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
18、MCMC算法的监测、适应与收敛评估
本文深入探讨了马尔可夫链蒙特卡罗(MCMC)算法的监测、适应与收敛评估方法,涵盖了图形诊断、链内和链间方差、有效样本大小以及固定宽度批量均值等技术。文章还介绍了自适应MCMC算法及其潜在挑战,并以R语言中的`coda`和`amcmc`包为例提供了实践工具和代码示例。通过理论分析与实例结合,帮助读者更好地理解和应用MCMC方法,确保其在贝叶斯统计和其他复杂模型中的正确收敛。原创 2025-07-15 11:51:18 · 8 阅读 · 0 评论 -
17、MCMC算法的收敛监测与自适应调整
本文探讨了MCMC算法的收敛监测与自适应调整方法。由于MCMC算法在理论上具有遍历性,但在实际应用中需要经验性评估其收敛性,文章重点介绍了三种不同类型的收敛评估:平稳分布的收敛、平均值的收敛以及近似独立同分布采样的实现。同时,讨论了常用的收敛诊断工具,如图形诊断、非参数平稳性检验和谱分析,并结合R语言中的coda包进行实例说明。此外,还介绍了自适应MCMC算法的基本原理、相关工具(如amcmc包)及其优缺点。最后给出了一些建议,强调应综合使用多种监测方法,并谨慎使用自适应策略,以提高MCMC模拟的效率和可靠原创 2025-07-14 15:45:43 · 7 阅读 · 0 评论 -
16、吉布斯采样器:分层结构、参数化及相关策略
本博客详细介绍了吉布斯采样器在分层贝叶斯模型中的应用,包括全条件分布的推导与模拟。通过泵故障数据示例说明了如何构建层次模型并实现后验推断。此外,还探讨了提升采样效率的技术如重新参数化、Rao-Blackwell化估计以及Metropolis within Gibbs策略,并讨论了不适当先验可能带来的问题。最后总结了相关技术点的优势与挑战,并提供了操作步骤和流程图供实践参考。原创 2025-07-13 13:20:10 · 6 阅读 · 0 评论 -
15、吉布斯采样器:原理、应用与代码实现
本文详细介绍了多级吉布斯采样器的原理及其在高维问题中的应用,同时探讨了缺失数据和潜在变量模型的处理方式,并结合切片采样器提供了一种通用的采样方法。通过多个示例(如多元正态分布、随机效应模型、删失数据模型、多项分布模型、逻辑回归等)展示了这些方法的具体实现与代码细节。文章还对不同采样方法进行了对比分析,讨论了其适用场景及优化方向,为复杂分布的模拟提供了实用指南。原创 2025-07-12 14:41:49 · 6 阅读 · 0 评论 -
14、Metropolis - Hastings算法与Gibbs采样器深度解析
本博文深入解析了Metropolis-Hastings算法和Gibbs采样器的核心原理与实际应用。文章详细介绍了Metropolis-Hastings算法中接受率的影响因素及其优化策略,同时探讨了Gibbs采样器的工作机制、条件分布的识别与模拟等关键技术点。通过实例和练习题展示了两种算法的具体实现方式,并对比分析了它们在不同场景下的适用性和性能特点。最后总结了两类算法的优势及未来发展方向,为处理复杂概率分布问题提供了系统性的指导方案。原创 2025-07-11 10:43:42 · 6 阅读 · 0 评论 -
13、Metropolis–Hastings算法:候选分布选择与接受率分析
本文深入探讨了Metropolis–Hastings算法中候选分布的选择与接受率分析。重点介绍了随机游走提案的原理与尺度校准的重要性,讨论了Langevin算法作为替代方法的优势与挑战,并通过混合模型和模型选择等实际问题展示了算法的应用。同时,文章分析了接受率与算法性能之间的复杂关系,提出了参数调整的实践建议,旨在帮助读者更好地理解和应用Metropolis–Hastings算法解决复杂采样问题。原创 2025-07-10 12:26:56 · 2 阅读 · 0 评论 -
12、蒙特卡罗优化与Metropolis - Hastings算法详解
本文详细探讨了蒙特卡罗优化方法与Metropolis-Hastings算法的核心原理及其应用。内容涵盖蒙特卡罗优化中的EM算法推导与实现、Metropolis-Hastings算法的基本步骤与性质、候选分布选择的影响,以及算法在贝叶斯推断和优化问题中的实际应用。通过多个示例和模拟实验,阐述了算法的收敛特性、性能评估与改进方向,为处理复杂高维统计问题提供了理论基础与实践指导。原创 2025-07-09 16:21:11 · 4 阅读 · 0 评论 -
11、蒙特卡罗优化中的随机近似方法
本文详细介绍了蒙特卡罗优化中的随机近似方法,包括随机近似概述、蒙特卡罗近似优化、缺失数据模型与边际化消除、EM算法以及蒙特卡罗EM算法。这些方法在处理复杂的统计优化问题时具有重要的应用价值,尤其是在处理缺失数据模型时。EM算法通过利用缺失数据结构解决优化问题,但需要多次运行以确保找到较好的解;而蒙特卡罗EM算法通过引入蒙特卡罗模拟近似期望对数似然,扩展了EM算法的应用范围,但需要额外的收敛性评估。实际应用中应根据问题特点选择合适的方法,并结合误差评估确保结果可靠性。原创 2025-07-08 11:32:35 · 2 阅读 · 0 评论 -
10、蒙特卡罗优化方法详解
本文详细介绍了优化问题的两大类别及其与数值和随机方法的解决方案。文章重点探讨了蒙特卡罗优化方法,包括基本的随机搜索、随机梯度方法以及模拟退火算法,并通过多个示例展示了这些方法在实际问题中的应用。总结部分对各类优化技术进行了对比,为不同场景下的方法选择提供了指导。原创 2025-07-07 15:48:52 · 3 阅读 · 0 评论 -
9、蒙特卡罗估计的方差缩减与加速方法
本文介绍了蒙特卡罗模拟中用于估计方差缩减与加速收敛的主要方法,包括Rao-Blackwell化、相关模拟、对偶变量和控制变量等技术。详细讨论了这些方法的原理、适用场景及其实际应用示例,并结合代码片段展示了其具体实现方式。此外,文章还解析了多个练习问题,进一步深化对这些方法的理解。通过合理选择和组合这些策略,可以显著提升蒙特卡罗模拟的效率和精度。原创 2025-07-06 11:19:23 · 4 阅读 · 0 评论 -
8、蒙特卡罗方法的收敛控制与加速
本文深入探讨了蒙特卡罗方法在收敛控制与加速方面的多种技术。文章介绍了基于中心极限定理的正态置信区间的局限性,并提出更全局的二阶收敛评估方法。通过并行运行多个独立序列或采用自助法抽样,可以更准确地监测估计量的变异性。同时,重点分析了重要性抽样估计量的渐近方差,并引入有效样本大小(ESS)和困惑度作为评估抽样效率的重要指标。此外,文章还讨论了如何利用多元统计方法和布朗运动理论构建有效的置信带,以实现更精确的收敛性评估。结合多个示例及R语言代码演示,展示了不同方法在实际问题中的应用效果。最后,通过对比各种方法的优原创 2025-07-05 10:44:28 · 4 阅读 · 0 评论 -
7、重要性抽样:原理、应用与优化
本博客详细介绍了重要性抽样的原理、应用与优化策略。首先探讨了传统蒙特卡罗方法的局限性,并引入重要性抽样作为提升积分估计效率的有效手段。通过理论推导和R语言实现,展示了其在尾概率近似、贝叶斯推断等场景中的优势。文章还深入讨论了重要性函数的选择标准及防御性抽样技术,以应对高方差和复杂分布问题。最后,结合多个实际案例和练习解答,帮助读者全面掌握该方法的应用与评估技巧。原创 2025-07-04 16:09:48 · 2 阅读 · 0 评论 -
6、随机变量生成与蒙特卡罗积分方法详解
本博客详细探讨了随机变量生成与蒙特卡罗积分的核心方法和应用技巧。内容涵盖多种随机变量的生成策略,如接受-拒绝算法及其优化、变换法等,并深入解析了蒙特卡罗积分的原理、优势及挑战。通过丰富的练习与示例,展示了如何利用计算机模拟解决复杂的积分问题,并比较了不同数值方法的优劣。此外,还介绍了在贝叶斯估计、多维积分以及正态累积分布函数计算中的实际应用场景。适合对统计推断、数值计算和模拟方法感兴趣的读者参考学习。原创 2025-07-03 11:00:23 · 4 阅读 · 0 评论 -
5、随机变量生成技术详解
本文详细介绍了在概率分布模拟中生成随机变量的关键技术。从均匀分布的基础出发,讨论了逆变换、一般变换以及接受-拒绝方法等多种生成技术,并提供了R语言的实现示例。内容涵盖标准分布和非标准分布的随机变量生成策略,适用于统计模拟、机器学习和数据科学等领域。原创 2025-07-02 14:48:45 · 4 阅读 · 0 评论 -
4、Mastering R: From Function Creation to Practical Applications
This blog post explores various aspects of mastering R programming, from basic plotting capabilities and function creation to advanced applications in statistical analysis and problem-solving. Topics include the use of core R functions like 'polygon' and '原创 2025-07-01 09:06:24 · 4 阅读 · 0 评论 -
3、R语言基础:编程、统计与图形绘制全解析
本博客全面解析了R语言的基础编程、统计功能与图形绘制方法。内容涵盖数据框的创建、常见概率分布及其函数、描述性统计与假设检验、非参数方法、线性与广义线性模型、时间序列分析及自助法应用,并详细介绍了R的图形设备和绘图技巧。适合希望掌握R语言进行数据分析和可视化的读者学习参考。原创 2025-06-30 15:15:33 · 2 阅读 · 0 评论 -
2、R语言基础编程入门与对象操作
本文详细介绍了R语言的基础编程知识与对象操作方法,涵盖R语言概述、启动与退出、包的加载与安装、各种对象类型(如向量、矩阵、数组、因子、列表和数据框)的创建与处理方式。文章还提供了常见问题解答以及高效编程的注意事项,帮助读者快速掌握R语言的核心编程技巧,为统计分析和数据科学工作奠定基础。原创 2025-06-29 12:01:02 · 5 阅读 · 0 评论 -
1、蒙特卡罗方法中的 R 语言编程入门
本文介绍了如何使用 R 语言实现蒙特卡罗方法的核心技术。内容涵盖 R 语言的基础知识,包括基本数据结构、概率分布、统计计算、图形绘制以及函数的编写和使用。重点讲解了随机变量生成的各种方法(如逆变换法、接受-拒绝法)、蒙特卡罗积分及其加速收敛技术(如重要性抽样、对偶变量法、控制变量法),并深入探讨了蒙特卡罗优化方法(如随机搜索、模拟退火)和马尔可夫链蒙特卡罗(MCMC)算法,包括 Metropolis-Hastings 算法和 Gibbs 采样器。此外,还讨论了 MCMC 算法的监测与适应策略,以提高模拟效率原创 2025-06-28 12:32:43 · 5 阅读 · 0 评论