解决:[anaconda安装pytorch]Collecting package metadata (current_repodata.json): failedYou will need to ad

本文记录了在安装Pytorch过程中遇到的Collecting package metadata失败问题,以及尝试的错误解决方案,如复制DLL文件、更新conda等。最终通过删除默认镜像源,添加清华源并重新安装解决了问题。同时提到了未安装CUDA却选择了CUDA版本的Pytorch导致的新问题,指出应选择无CUDA版本进行安装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解决:Collecting package metadata (current_repodata.json): failed

  • 1.问题导入
  • 2.安装anaconda
  • 3.安装pytorch
  • 4.问题解决方式

1.问题导入

昨天运行一段代码,需要导包,但没有安装,按照pycharm中代码提示install package torch总出错:

m = torch.nn.MaxPool2d(3, stride=2)
input = autograd.Variable(torch.randn(20, 16, 50))
print(input.shape)
output = m(input)
output.shape

torch.Size([20, 16, 50])
torch.Size([20, 7, 24])

问了一下室友,室友刚学深度学习时有安装过这个,说用torch要安装pytorch,就给我发了个视频,装pytorch之前还要装anaconda。

视频链接:https://live.csdn.net/v/121851

2.安装anaconda

在这里插入图片描述

装完anaconda后,在cmd中执行 conda list命令 和conda --version 命令后,能查看到版本,就说明已经安装好了anaconda。

  • 执行conda list命令 有很多 只截取了部分
    执行conda list命令 有很多 只截取了部分
  • 执行conda --version 命令
    在这里插入图片描述
  • anaconda安装完成

3.安装pytorch

打开Pytorch官网https://pytorch.org/
在这里插入图片描述

  • 安装成功
    用管理员身份运行cmd,粘贴conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch 这条命令,有的电脑到这里能成功运行,就像室友的电脑一样,没有出任何错,直接就安装成功了。
    在这里插入图片描述
  • 安装失败
    用管理员身份运行cmd,粘贴conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch 这条命令,有的电脑到这里能成功运行,就像室友的电脑一样,没有出任何错,直接就安装成功了。但是我的电脑就出错了,忘记截图了。
    类似如下错误信息:
    Collecting package metadata (current_repodata.json): failed。
    An HTTP error occurred when trying to retrieve this URL. HTTP errors are often intermittent, and a simple retry will get
    You will need to adjust your conda configuration to proceed.
    Use conda config --show channels to view your configuration’s current state,and use conda config --show-sources to view config file locations.
    PackagesNotFoundError: The following packages are not available from current channels:

4.问题解决方式

尝试了很多解决方法都不对。终于有一种正确了一些。

  • 错误的尝试一:
    按照下面的方式来解决掉:把路径“Anaconda3/Library/bin ”下面的文件复制到路径“Anaconda3/DLLs”下:
    libcrypto-1_1-x64.dll
    libssl-1_1-x64.dll
    再次运行命令行:
    conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
    还是报错,没有用。
  • 错误的尝试二:
    还有要更新anaconda的,也解决不了我的错误。
    conda update conda
    conda update anaconda
    conda update anaconda-navigator //update最新版本的anaconda-navigator
  • 等等。。。
  • 正确的解决方法:
    先删除已经设定好滴默认镜像源,执行下面的命令后就恢复了原来的源
    conda config --remove-key channels
    重新添加清华源
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
    conda config --set show_channel_urls yes
    重新执行这条命令:
    conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
    在这里插入图片描述

5.遗留问题待解决

但是又出现了其他问题,该怎么解决呀?
在这里插入图片描述

6. 目录5遗留问题的解决办法

现在是凌晨了,今天一天应该说昨天一天,什么也没有干成,就弄这个问题了,刚才忽然发现我没装CUDA却在装pytorch时选了cuda版本,欲哭无泪啊~
解决办法我已经写在了下一篇博客(解决:CondaHTTPError: HTTP 000 CONNECTION FAILED for url )里,https://blog.csdn.net/ckc_csdn/article/details/110847776

<think>嗯,用户遇到了Anaconda安装包时出现的Solving environment错误,需要解决这个问题。首先,我得回忆一下常见的解决方法。根据提供的引用内容,错误信息主要是关于conda在解析环境时失败,可能和依赖冲突或镜像源有关。 首先,用户可能已经尝试过更换镜像源,但没解决,所以需要其他方法。常见的步骤包括更新conda本身,因为旧版本可能有bug。然后,可以尝试使用更灵活的解决模式,比如--freeze-installed或者--revision来回滚到之前的状态。另外,创建新环境而不是在现有环境中安装可能更有效,因为现有环境可能有复杂的依赖关系导致冲突。如果问题依然存在,手动指定版本或者使用mamba加速依赖解析也是可行的方案。 需要确保用户按照正确的步骤操作,比如更新conda的命令是conda update -n base -c defaults conda。然后,在安装包时添加参数,比如conda install package --freeze-installed。创建新环境时,指定Python版本和需要的包,减少冲突的可能性。此外,用户可能需要清理conda的缓存,或者使用第三方工具如mamba来替代conda的解析器,因为mamba更快且更有效处理复杂依赖。 还要考虑到某些情况下,错误可能是由于特定包的版本不兼容或平台问题,比如用户是否在正确的操作系统下安装对应的包版本。例如,某些包可能只适用于Linux或Windows,导致在macOS上安装失败。需要提醒用户检查包是否存在对应平台的版本。 另外,引用中提到的Segmentation fault错误可能与环境损坏有关,建议检查环境或重新安装。最后,如果所有方法都无效,可能需要导出环境文件,手动编辑依赖版本,再重新创建环境。总结这些步骤,分点列出,确保用户能逐步尝试解决问题。</think>### 解决Anaconda安装包失败的方法 当使用Anaconda安装包时出现`Solving environment failed with initial frozen solve`或`repodata.json`相关错误,通常由依赖冲突、镜像源问题或Conda版本过旧导致。以下是分步解决方案: --- #### 1. **更新Conda至最新版本** ```bash conda update -n base -c defaults conda ``` - **作用**:旧版本Conda可能存在依赖解析的兼容性问题,更新后可能自动修复[^1][^2]。 - **注意**:若更新失败,可尝试用`mamba`替代(见步骤5)。 --- #### 2. **强制使用灵活解析模式** 在安装命令后添加参数: ```bash conda install 包名 --freeze-installed ``` - **作用**:跳过严格的依赖冻结,允许Conda重新计算依赖关系[^4][^5]。 - **替代方案**:使用`conda install 包名 --strict-channel-priority`限制通道优先级以减少冲突。 --- #### 3. **创建新独立环境** ```bash conda create -n 新环境名 python=指定版本 包名 # 示例:创建Python 3.7环境并安装numpy conda create -n py37 python=3.7 numpy ``` - **原理**:新环境依赖关系更简单,避免现有环境的复杂依赖冲突[^3][^5]。 --- #### 4. **清理缓存并重试** ```bash conda clean --all # 清理所有缓存 conda update --all # 更新所有已安装包 ``` - **适用场景**:缓存文件损坏或元数据过期时使用[^2]。 --- #### 5. **使用Mamba加速解析** Mamba是Conda的替代依赖解析器,速度更快且能处理复杂依赖: ```bash conda install -n base -c conda-forge mamba # 安装Mamba mamba install 包名 # 使用Mamba替代Conda安装 ``` - **优势**:Mamba基于SAT算法,能更快解决依赖冲突[^5]。 --- #### 6. **手动指定包版本** 若已知兼容版本,可直接指定: ```bash conda install 包名=版本号 # 例如:pytorch=1.10.0 ``` - **适用场景**:因版本过高/过低导致依赖树冲突时使用。 --- #### 7. **检查镜像源配置** 临时切换为官方默认源(清华源等可能偶发同步延迟): ```bash conda config --remove-key default_channels # 删除镜像源 conda config --add channels defaults # 恢复默认源 ``` --- ### 总结流程图 ```mermaid graph TD A[出现Solving environment错误] --> B{更新Conda} B -->|成功| C[尝试安装] B -->|失败| D[使用Mamba] C --> E[仍失败?] E -->|是| F[创建新环境] F --> G[清理缓存] G --> H[手动指定版本] ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值