pytorch 池化

本文深入探讨了池化层在卷积神经网络中的作用与实现,解释了池化层如何通过减少参数数量和空间维度来控制过拟合,同时保持图像特征不变。了解池化层的不同类型,如最大池化、平均池化及其在现代深度学习应用中的实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

池化层

在这里插入图片描述

在这里插入图片描述

参考:
https://cs231n.github.io/convolutional-networks/
https://www.oreilly.com/radar/visualizing-convolutional-neural-networks/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值