控制系统的时域分析法,即直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应)。
用MATLAB求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s的降幂排列写为两个数组num、den。由于控制系统分子的阶次m一般小于其分母的阶次n,所以num中的数组元素与分子多项式系数之间自右向左逐次对其,不足部分用零补齐,缺项系数也用零补上。
例如,对于下列系统:
该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。求其阶跃响应的MATLAB指令为:
num = [0 0 25];
den = [1 4 25];
step(num,den)
grid
运行结果为:
同样的,求系统的脉冲响应指令为:impulse(num,den)
对于系统的稳定性判断,一般有两种方法:
1.直接求根判稳:控制系统稳定的充要条件是其特征方程的根均具有负实部。因此为了判别系统的稳定性就要求出系统特征方程的根,并检验它们是否都具有负实部。
MATLAB中对多项式求根的函数为roo