Spark案例实操
数据如下:
数据解析如下:
# 以第一行为例
2019-07-17 日期
95 用户ID
26070e87-1ad7-49a3-8fb3-cc741facaddf sessionID
37 页面ID
2019-07-17 00:00:02 动作时间
手机 搜索-关键字,如果该字段不为null说明当前是搜索操作
-1 点击-品类ID,如果该字段不为-1说明当前操作是点击
-1 点击-产品ID,如果该字段不为-1说明当前操作是点击
null 下单-品类ID,如果该字段不为null说明当前操作是下单操作,多个ID用,隔开
null 下单-产品ID,如果该字段不为null说明当前操作是下单操作,多个ID用,隔开
null 支付-品类ID,如果该字段不为null说明当前操作是支付操作,多个ID用,隔开
null 支付-产品ID,如果该字段不为null说明当前操作是支付操作,多个ID用,隔开
3 城市id
上面的数据图是从数据文件中截取的一部分内容,表示为电商网站的用户行为数据,主要包含用户的 4 种行为:搜索,点击,下单,支付。数据规则如下:
数据文件中每行数据采用下划线分隔数据
每一行数据表示用户的一次行为,这个行为只能是 4 种行为的一种
如果搜索关键字为 null,表示数据不是搜索数据
如果点击的品类 ID 和产品 ID 为-1,表示数据不是点击数据
针对于下单行为,一次可以下单多个商品,所以品类 ID 和产品 ID 可以是多个,id 之间采用逗号分隔,如果本次不是下单行为,则数据采用 null 表示
支付行为和下单行为类似
编号 | 字段名称 | 字段类型 | 字段含义 |
---|---|---|---|
1 | date | String | 用户点击行为的日期 |
2 | user_id | Long | 用户的 ID |
3 | session_id | String | Session 的 ID |
4 | page_id | Long | 某个页面的 ID |
5 | action_time | String | 动作的时间点 |
6 | search_keyword | String | 用户搜索的关键词 |
7 | click_category_id | Long | 某一个商品品类的 ID |
8 | click_product_id | Long | 某一个商品的 ID |
9 | order_category_ids | String | 一次订单中所有品类的 ID 集合 |
10 | order_product_ids | String | 一次订单中所有商品的 ID 集合 |
11 | pay_category_ids | String | 一次支付中所有品类的 ID 集合 |
12 | pay_product_ids | String | 一次支付中所有商品的 ID 集合 |
13 | city_id | Long | 城市 id |
需求一:TOP10热门品类
品类是指产品的分类,大型电商网站品类分多级,咱们的项目中品类只有一级,不同的公司可能对热门的定义不一样。我们按照每个品类的点击、下单、支付的量来统计热门品类。
鞋 点击数 下单数 支付数
例如, 综合排名 = 点击数20%+下单数30%+支付数*50%
本项目需求优化为:先按照点击数排名,靠前的就排名高;如果点击数相同,再比较下单数;下单数再相同,就比较支付数。
第一种实现方法:
object TestHostCategoryTop10T1 {
def main(args: Array[String]): Unit = {
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("HostCategoryTop10")
val sc = new SparkContext(sparkConf)
// TOP10热门品类
// 1、读取原始日志数据
val rdd: RDD[String] = sc.textFile("datas/spark-core/user_visit_action.txt")
// 2、统计品类的点击数量:(品类ID,点击数量)
val clickActionRdd: RDD[String] = rdd.filter(_.split("_")(6) != "-1")
val clickCountRdd: RDD[(String, Int)] = clickActionRdd.map((action: String) => (action.split("_")(6), 1)).reduceByKey(_ + _)
// 3、统计品类的下单数量:(品类ID,下单数量)
val orderActionRdd: RDD[String] = rdd.filter(_.split("_")(8) != "null")
val orderCountRdd: RDD[(String, Int)] = orderActionRdd.flatMap(action => {
action.split("_")(8).split(",").map((_, 1))
}).reduceByKey(_ + _)
// 4、统计品类的支付数量:(品类ID,支付数量)
val payActionRdd: RDD[String] = rdd.filter(_.split("_")(10) != "null")
val payCountRdd: RDD[(String, Int)] = payActionRdd.flatMap(action => {
action.split("_")(10).split(",").map((_, 1))
}).reduceByKey(_ + _)
// 5、讲品类进行排序,并且取前十名
// 点击数量排序,下单数量排序,支付数量排序
// 元祖排序:先比较第一个,再比较第二个,再比较第三个,一次类推
// (品类ID, (点击数量, 下单数量, 支付数量))
// 连接数据 cogroup = connect + group
val cogrouprdd: RDD[(String, (Iterable[Int], Iterable[Int], Iterable[Int]))] =
clickCountRdd.cogroup(orderCountRdd, payCountRdd)
val analysisRDD: RDD[(String, (Int, Int, Int))] = cogrouprdd.mapValues {
case (clickIter, orderIter, payIter) => {
var clickCount = 0;
if (clickIter.iterator.hasNext) {
clickCount = clickIter.iterator.next()
}
var orderCount = 0;
if (orderIter.iterator.hasNext) {
orderCount = orderIter.iterator.next()
}
var payCount = 0;
if (payIter.iterator.hasNext) {
payCount = payIter.iterator.next()
}
(clickCount, orderCount, payCount)
}
}
val resultRDD: Array[(String, (Int, Int, Int))] = analysisRDD.sortBy(_._2, false).take(10)
// 6、采集
resultRDD.foreach(println)
// (15,(6120,1672,1259))
// (2,(6119,1767,1196))
// (20,(6098,1776,1244))
// (12,(6095,1740,1218))
// (11,(6093,1781,1202))
// (17,(6079,1752,1231))
// (7,(6074,1796,1252))
// (9,(6045,1736,1230))
// (19,(6044,1722,1158))
// (13,(6036,1781,1161))
sc.stop()
}
}
第二种方法:
object TestHostCategoryTop10T2 {
def main(args: Array[String]): Unit = {
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("HostCategoryTop10")
val sc = new SparkContext(sparkConf)
// TOP10热门品类
// 1、读取原始日志数据
val rdd: RDD[String] = sc.textFile("datas/spark-core/user_visit_action.txt")
rdd.cache()
// Q1:数据源被重复使用的次数过多
// Q2:cogroup有可能存在Shuffle,性能较低
// (品类ID,点击数量) => (品类ID,(点击数量, 0, 0))
// (品类ID,下单数量) => (品类ID,(0, 下单数量, 0))
// (品类ID,支付数量) => (品类ID,(0, 0, 支付数量))
// 然后两两聚合最终形成:(品类ID, (点击数量, 下单数量, 支付数量))
// 2、统计品类的点击数量:(品类ID,点击数量)
val clickActionRdd: RDD[String] = rdd.filter(_.split("_")(6) != "-1")
val clickCountRdd: RDD[(String, (Int, Int, Int))] = clickActionRdd.map((action: String) => (action.