论图像数据标注

网上关于标注的文章也比较少,今天来讲讲标注,希望这篇文章能够真切的帮助大家。

也参考了几篇文章:

VOC2011 Annotation Guidelines

百度安全验证

图像标注规则 | Pascal VOC 标注规则的学习和分析_SunnyFish-ty的博客-CSDN博客_pascal voc标注规则

基本规则如下:

标注规则总结如下:

1、你不能确定是某个类别的,不要标注。(衍生到目标检测画框框,要看你框里的小图片是否能够确定类别)

2、物体非常小,这个大小如何度量要看你项目需求。

3、物体只有低于20%的部分可见,从露出的部分都要思考半天才能半信半疑的确定为某类别的,不要标注。比如只露出了个轮胎,你不能标注为小汽车。当然只露出了一个人头,你可以标注为人,毕竟人头默认是在人身上的。

4、标注类别,划分的越细越好,因为代码将来合并类别是简单的,而数据标完了后面返工是麻烦的。

5、物体太密集的,跟算法讨论是否要标注。算法本身能识别多少个多少种类是有容量的。

6、标注规则要明确,这是什么意思?就是规则十分明确,

(1)比如关

### 关于图像标注的研究论文 图像标注(Image Annotation)作为计算机视觉领域的重要研究方向之一,涉及如何通过算法自动为图像分配标签或描述其内容。以下是几个与图像标注相关的研究主题及其可能关联的学术资源: #### 1. 图像分类技术的应用 图像分类是实现图像标注的基础方法之一。通过对大量已标记数据的学习,模型可以预测新输入图像所属类别[^1]。这种方法通常依赖监督学习框架,例如卷积神经网络(CNN),能够有效提取特征并完成分类任务。 #### 2. 单样本目标检测中的自适应变换 对于更复杂的场景理解需求,单样本对象检测(One-Shot Object Detection)提供了一种高效解决方案。其中提到的 Adaptive Image Transformer 技术虽然具体细节未公开,但它展示了如何利用少量训练实例来识别多种物体类别的潜力[^2]。这种能力可以直接应用于精细粒度下的图像语义解析以及自动化标注过程。 #### 3. 数据科学家面临的挑战 初学者在阅读高深的技术文档常遇到困难。正如某位作者分享自己经历表示:“当我初次接触这些科研文章也遇到了相同难题。” 这提醒我们寻找易于理解和实践性强的相关资料的重要性[^3]。 #### 4. 上采样操作的作用 在某些特定应用场合下,如语义分割或者实例分割等领域内,上采样的概念变得尤为重要。它允许恢复因多次降维操作而丢失的空间分辨率信息。文中解释道,“为了获得同原始大小一致的结果图象...”,这表明了该步骤在整个工作流里的必要位置[^4]。 ```python import torch.nn as nn class UpsampleLayer(nn.Module): def __init__(self, scale_factor=2, mode='nearest'): super(UpsampleLayer, self).__init__() self.up = nn.Upsample(scale_factor=scale_factor, mode=mode) def forward(self, x): return self.up(x) ``` 上述代码片段展示了一个简单的 PyTorch 实现用于执行双线性插值或其他形式的放大处理。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值