全概率公式与贝叶斯公式

本文探讨了全概率公式和贝叶斯定理的基础及其在信息技术领域的应用。全概率公式通过加法原理处理多个独立原因导致的结果,而贝叶斯定理则用于更新先验概率,从观察到的结果反推原因的概率。这两个概念在数据挖掘、机器学习和统计推理中发挥着关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、全概率公式是由加法公式和乘法公式作为基础的
在这里插入图片描述
在这里插入图片描述
应用:**由因导果,**几个原因就几个项
在这里插入图片描述
2、贝叶斯公式–以条件概率和全概率公式为基础
验后概率,由果导因
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值