Python实现马氏距离计算方法及源代码
马氏距离是一种用于计算样本相似度的算法,主要使用在多元统计和分类学习中。它通过考虑各变量之间的相关性来对数据进行测量,因此在处理具有高相关性的数据集时效果非常好。本文将介绍如何使用Python编写马氏距离算法,并提供完整的示例代码。
以下是马氏距离公式:
D(x,y) = √((x-y)T S^(-1)(x-y))
其中,x和y分别是两个样本,S是协方差矩阵,T表示转置运算。
首先,我们需要导入numpy库,以便进行矩阵计算。代码如下所示:
import numpy as np
接下来,我们定义一个函数来计算马氏距离。该函数需要三个参数:样本向量x、样本向量y和协方差矩阵S。代码如下所示:
def mahalanobis_distance(x, y, S):
x = np.array(x)
y = np.array(y)
S_inv = np.linalg.inv(S)
diff = x - y
return np.sqrt(diff.dot(S_inv).dot(diff.T))
对于这个函数,我们需要使用numpy数组(array)来存储样本向量及协方差矩阵,并使用numpy.linalg.inv函数计算矩阵的逆矩阵。然后,我们计算x和y之间的差异,使用dot()函数进行矩阵乘法,并返回结果的平方根。
接下来,我们定义一些示例数据来测试我们的函数。这些数据包括两个三维向量x和y,以及它们之间的协方差矩阵S。
x = [1, 2, 3]
y = [4, 5, 6]
S = np.array([[3