Python实现马氏距离计算方法及源代码

418 篇文章 ¥99.90 ¥299.90
本文介绍了Python如何计算马氏距离,这是一种考虑变量相关性的样本相似度算法,适用于高相关性数据集。提供了完整的源代码示例,展示了计算两个三维向量间马氏距离的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python实现马氏距离计算方法及源代码

马氏距离是一种用于计算样本相似度的算法,主要使用在多元统计和分类学习中。它通过考虑各变量之间的相关性来对数据进行测量,因此在处理具有高相关性的数据集时效果非常好。本文将介绍如何使用Python编写马氏距离算法,并提供完整的示例代码。

以下是马氏距离公式:

D(x,y) = √((x-y)T S^(-1)(x-y))

其中,x和y分别是两个样本,S是协方差矩阵,T表示转置运算。

首先,我们需要导入numpy库,以便进行矩阵计算。代码如下所示:

import numpy as np

接下来,我们定义一个函数来计算马氏距离。该函数需要三个参数:样本向量x、样本向量y和协方差矩阵S。代码如下所示:

def mahalanobis_distance(x, y, S):
x = np.array(x)
y = np.array(y)
S_inv = np.linalg.inv(S)
diff = x - y
return np.sqrt(diff.dot(S_inv).dot(diff.T))

对于这个函数,我们需要使用numpy数组(array)来存储样本向量及协方差矩阵,并使用numpy.linalg.inv函数计算矩阵的逆矩阵。然后,我们计算x和y之间的差异,使用dot()函数进行矩阵乘法,并返回结果的平方根。

接下来,我们定义一些示例数据来测试我们的函数。这些数据包括两个三维向量x和y,以及它们之间的协方差矩阵S。

x = [1, 2, 3]
y = [4, 5, 6]
S = np.array([[3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

code_welike

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值