hdu4455——dp

本文介绍了一种使用动态规划方法解决的问题,即计算一个序列中所有长度为w的连续子序列中不相同数的个数之和。通过预处理和递推,该方法能够高效地求解问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:询问一个序列所有长度为w的连续子序列中不相同数的个数之和。

思路居然是dp,关键一点是明确每次往序列增加数的时候这个序列的不相同数的个数只会增加或者不变。那我们可以预处理出每个数左边最进且与其相同的数的位置。然后一边递推算出所有的答案。

#include <iostream>
#include <cstring>
#include <cstdio>
#define lng long long
using namespace std;

const int maxn = 1000000 + 10;
int num[maxn], hash[maxn];
int dp1[maxn], n;
lng dp[maxn];

lng c[maxn];
inline int lowbit(int t) { return t & (-t); }
inline void add(int pos, int t) { while(pos > 0) { c[pos] += t; pos -= lowbit(pos); } }
inline lng sum(int pos) { lng s = 0; while(pos <= n) { s += c[pos]; pos += lowbit(pos); } return s; }

void prework()
{
    memset(hash, 0, sizeof(hash)); 
    memset(dp1, 0, sizeof(dp1));
    memset(c, 0, sizeof(c));
    for(int i = 1; i <= n; ++i) scanf("%d", num + i);
    for(int i = n; i > 0; --i)
    {
        dp1[i] = (hash[num[i]]) ? dp1[i + 1] : dp1[i + 1] + 1;
        hash[num[i]] = 1;
    }
    memset(hash, 0, sizeof(hash));
    for(int i = 1; i <= n; ++i)
    {
        add(i - hash[num[i]], 1);
        hash[num[i]] = max(hash[num[i]], i);
    }
    dp[1] = sum(1);
    for(int i = 2; i <= n; ++i)
    {
        dp[i] = dp[i - 1] - dp1[n - i + 2];
        dp[i] += sum(i);
    }
}

void solve()
{
    int q; scanf("%d", &q);
    while(q--)
    {
        int w; scanf("%d", &w);
        cout << dp[w] << "\n";
    }
}

int main()
{
    freopen("in.txt", "r", stdin);
    while(~scanf("%d", &n) && n)
    {
        prework();
        solve();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值