zookeeper环境搭建详解

本文详细介绍ZooKeeper集群的部署流程,包括安装配置、文件调整及多节点间配置同步等关键步骤。通过实例演示如何在多台虚拟机上部署并配置ZooKeeper集群。
1.先把安装包上传到虚拟机中,在SecureCRT软件中可以使用快捷键alt+p进入sftp模式传文件,也可以
输入rz命令进行选择文件,直接上传,但是rz使用的前提是安装lrzsz,可以yum install lrzsz安装
2.为了好管理zookeeper,在root下新建一个apps的文件夹,把文件解压进去
3.解压之后有很多东西是不需要用的,比如xml文件要有源码包,可以删除,也可以不删
        删除的话可以输入命令:rm -rf src/ *.xml *.txt
还有docs dist-maven等文件,可删可不删,但是为了copy给其虚拟机时拷贝速度考虑,还是删了
        rm -rf docs dist-maven
4.查看进入配置文件中,conf是配置文件,会发现有个zoo_sample.cfg 这个文件名是不生效的,所以改名字为zoo.cfg
         cp zoo_sample.cfg zoo.cfg


5.配置里面都是关于zookeeper的配置,比较重要的是dataDir=/tmp/zookeeper,这是zookeeper存储数据的地方
而linux系统tmp文件下都是存的临时数据的,所以不合适。从新定义dataDir=/root/zkdata.


还有一个比较重要的是需要写出zookeeper集群中有几台机器,机器的id和ip
直接在后面追加 ,有几台写几台,自己的也要写
server.1=gaobin:2888:3888
server.2=mini01:2888:3888
server.3=mini02:2888:3888
其中1,2,代表着服务器的id,2888是服务之间的通讯端口,3888是投票选出一个主机的端口
没必要去防火墙配置每一个端口,直接把防火墙关了就好


6.还需要将此台服务器的id写入到他的文件里面去,配置过程为
   在配置文件里面定义的数据文件(dataDir=/root/zkdata)zkdata直接创建一个myid的文件,然后把id地址写入
   直接输入:echo 1 > myid就行了
7.至此,一台zookeeper服务器就配置好了,现在可以把之前做的工作全都scp到另一个虚拟机中
  为了方便,直接把apps那个文件夹拷贝过去,拷贝到对方root文件下,拷贝文件夹需要加-r参数
    scp -r apps/  root@mini01:/root




8.虽然拷贝过去了,但是相同的也要zkdata,在root下创建zkdata,并在其中创建myid
     mkdir zkdata
     echo 2 > zkdata/myid
 注意此时的2是根据配置文件的server.2=mini01:2888:3888


 然后按照 7,8步骤重复到其他主机配置


9.为了方便通信成功,现在把所有主机的防火墙都停止了
service tables stop
此处有个小技巧,在SecureCRT中可以一次从当前window中发送命令给所有的主机
view菜单下有个chat window勾选上,就会在最下面出现一个小窗口,在小窗口处点击右键,
在选项里选中Send Chat to all tabs即可,输入命令回车即可




10.启动zookeeper,进入apps/zookeeper-3.4.5/bin下有个zkServer.sh进行启动就行了
此时为了方便启动,现在把9中的小技巧使用了
cd /root/apps/zookeeper-3.4.5 要用全路径,因为有些虚拟机此时所处路径不同
输入启动命令:
bin/zkServer.sh start
11.去看看是否启动成功和状态如何
      bin/zkServer.sh status
 如果出现Mode:follower说明启动成功且是从机


 如果出现Mode:leader说明启动成功且是主机

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值