深度学习建模预测全流程【DenseNet169+Torch】

一、 数据预处理

数据预处理是深度学习建模预测流程中的第一步,它包括数据清洗、数据转换、特征选择等步骤。数据预处理的目标是将原始数据转换为神经网络可以接受的格式,并且尽可能地减少噪声和不相关的信息。

1.1 数据加载

torchvision.datasets.ImageFolder 是 PyTorch 中用于处理图像数据集的一个类,它主要用于加载将不同类别的图像分别放置在不同的子目录下的数据集结构。


root/class_1/image_1.jpg
root/class_1/image_2.jpg
...
root/class_2/image_1.jpg
root/class_2/image_2.jpg
...

ImageFolder 类会自动地将这种目录结构的图像数据加载并组织成 PyTorch 的 Dataset 对象。当创建了一个 ImageFolder 对象后,就可以通过索引的方式来获取每个图像的数据和对应的标签。

#导入 ImageFolder
from torchvision.datasets import ImageFolder

#创建 ImageFolder 对象,并指定数据集的路径
dataset = ImageFolder(filepath, transform=None)

#​可以通过索引访问数据集中第一个样本的图像数据和标签
image, label = dataset[0] 

1.2 数据划分与数据转换

torch.utils.data.random_split 用于随机分割一个数据集,生成训练集,验证集,测试集。

transforms 用于数据转换,即对图像进行预处理或增强。

# 随机分割数据集
train_size = int(0.8 * len(dataset))  
test_size = len(dataset) - train_size  
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])

# 对训练集和测试集应用不同的转换
# 定义训练集的数据增强
train_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.17666], [0.2539]).float(),
    transforms.Resize([600, 600]),
    transforms.RandomVerticalFlip(p=0.5),
    transforms.RandomAutocontrast(p=0.8),
    transforms.Grayscale(num_output_channels=3),])

# 定义测试集的数据转换(这里无需增强)
test_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Resize([600, 600]),
    transforms.Grayscale(num_output_channels=3),])

train_dataset.dataset.transform = train_transform
test_dataset.dataset.transform = test_transform

1.3 数据访问

torch.utils.data import DataLoader 用于将数据集加载到批处理中。

#创建数据加载器,用于批量加载数据
train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=8)

test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=True, num_workers=8)

二、模型训练

2.1 搭建模型

torch.nn 是 PyTorch 中用于构建神经网络的模块。它提供了一组类和函数,用于定义、训练和评估神经网络模型。torch.nn 模块的核心是 nn.Module 类,它是所有神经网络模型的基类。通过继承 nn.Module 类,并定义 forward 方法,您可以创建自己的神经网络模型,并定义模型的结构和操作。

2.1.1 使用 nn.Sequential

对于相对简单的网络,可以使用 torch.nn.Sequential 来快速定义一个连续的层序列。这种方法简洁明了,非常适合没有复杂分支或自定义操作的网络。 torch.nn.Sequential 的详细用法见链接torch.nn.Sequential 用法介绍

2.1.2 继

深度学习技术在三维影像建模中的应用已经取得了显著进展,为传统方法带来了新的突破。以下是几种主要的技术方法: ### 1. 卷积神经网络(CNN)用于三维重建 卷积神经网络是深度学习中最常用的模型之一,主要用于处理具有网格结构的数据,如图像。在三维影像建模中,CNN可以扩展到处理多视角图像或视频序列,以生成三维模型。通过训练大量带有标注的二维图像数据集,CNN能够预测物体的形状和表面属性,从而实现从单张或多张二维图像重建三维模型[^1]。 ```python # 示例代码:使用预训练的CNN模型进行特征提取 import torch from torchvision import models, transforms # 加载预训练的ResNet模型 model = models.resnet50(pretrained=True) model.eval() # 图像预处理 transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), ]) # 假设image是一个PIL图像对象 input_tensor = transform(image).unsqueeze(0) # 添加批次维度 features = model(input_tensor) ``` ### 2. 生成对抗网络(GAN)与变体 生成对抗网络由一个生成器和一个判别器组成,广泛应用于图像生成任务。对于三维建模,GAN及其变体(如3D-GAN、StyleGAN等)被用来直接生成高质量的三维模型。这些模型通常基于潜在空间中的随机向量来生成三维形状,并且可以通过调整潜在变量来控制生成模型的样式和细节[^1]。 ### 3. 自编码器(Autoencoder) 自编码器是一种无监督学习方法,它通过编码器将输入数据压缩成低维表示,然后通过解码器恢复原始数据。在三维建模领域,自编码器可用于学习紧凑的三维形状表示,并用于形状补全、风格迁移等任务。例如,点云自编码器可以直接处理不规则分布的点云数据,学习其内在结构并进行重建。 ```python # 示例代码:简单的自编码器架构 import tensorflow as tf from tensorflow.keras import layers, Model class Autoencoder(Model): def __init__(self, latent_dim): super(Autoencoder, self).__init__() self.latent_dim = latent_dim self.encoder = tf.keras.Sequential([ layers.Flatten(), layers.Dense(latent_dim, activation='relu'), ]) self.decoder = tf.keras.Sequential([ layers.Dense(784, activation='sigmoid'), layers.Reshape((28, 28)) ]) def call(self, x): encoded = self.encoder(x) decoded = self.decoder(encoded) return decoded autoencoder = Autoencoder(latent_dim=64) ``` ### 4. 点云处理与深度学习 点云是三维建模中常见的数据形式,代表了空间中的离散点集合。PointNet 和 PointNet++ 是专门设计用于处理点云数据的深度学习模型,它们可以直接处理无序排列的点云,并从中提取有用的特征。这类方法常用于分类、分割以及从点云中重建完整三维形状的任务[^1]。 ### 5. 体积表示与VoxelNet 体积表示将三维空间划分为小立方体(称为体素),每个体素包含有关该位置是否存在物质的信息。VoxelNet 或类似的体积CNN可以利用这种表示来进行高效的三维物体检测和重建。这种方法适合处理需要精确几何信息的应用场景。 ### 6. 多视图立体视觉(MVS)结合深度学习 多视图立体视觉是一种经典的三维重建技术,它依赖于多个视角下的图像来估计深度信息。近年来,深度学习增强了这一过程,尤其是在匹配成本计算和优化方面。DeepMVS 等算法展示了如何利用深度学习提高MVS的准确性和效率。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值