目录
前言
随着人工智能技术的飞速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了显著的成就。这些模型通过在海量文本数据上进行预训练,学习到了语言的基本模式和结构。然而,预训练模型在特定领域或任务上的表现可能并不理想,因此微调(Fine-Tuning)成为了提升模型性能的关键步骤。本文将深入解析大模型微调的核心概念、实战技巧、优化方法以及高效部署策略,帮助读者更好地理解和应用这一技术。
目录
随着人工智能技术的飞速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了显著的成就。这些模型通过在海量文本数据上进行预训练,学习到了语言的基本模式和结构。然而,预训练模型在特定领域或任务上的表现可能并不理想,因此微调(Fine-Tuning)成为了提升模型性能的关键步骤。本文将深入解析大模型微调的核心概念、实战技巧、优化方法以及高效部署策略,帮助读者更好地理解和应用这一技术。