- 博客(1178)
- 资源 (1)
- 收藏
- 关注

原创 Coursera吴恩达《深度学习》课程总结(全)
01 神经网络和深度学习(Neural Networks and Deep Learning)1-1 深度学习概论主要介绍:主要对深度学习进行了简要概述。首先,我们使用房价预测的例子来建立最简单的单个神经元组成的神经网络模型。然后,我们将例子复杂化,建立标准的神经网络模型结构。接着,我们从监督式学习入手,介绍了不同的神经网络类型,包括Standard NN,CNN和RNN。不同的神经网络模型适合处理不同类型的问题。对数据集本身来说,分为结构化数据和非结构化数据。近些年来,深度学习对非结构化数据的处理
2021-09-24 19:01:44
41586
5
原创 AI新智力 | AI | 大模型入门(七):参数量、Token、上下文窗口、上下文长度、温度
使用大模型时,我们经常会看到诸如“参数量”、“Token”、“上下文窗口”、“上下文长度”和“温度”等术语,这些术语代表着什么意思?它们对AI大模型有什么作用?
2025-07-18 07:30:00
899
原创 AI新智力 | AI|大模型入门(六):主流厂商和产品
本文梳理了当前主流大模型产品及其技术路线。大模型主要分为三类:OpenAI的GPT系列(decoder-only)、Google的BERT系列(encoder-only)和清华的GLM系列(encoder-decoder)。国外代表产品包括ChatGPT、Bard和LLaMA,国内则有腾讯元宝、文心一言、通义千问等。文章建议普通用户选择科技巨头产品,因其在资源、数据等方面优势明显。目前大模型市场竞争本质仍是资本和流量的竞争,头部企业占据明显优势。
2025-07-18 00:30:00
463
原创 AI新智力 | AI|大模型入门(五):智能体(Agent)
在目前发展阶段,因为智能体适应性高、成本适中,正在被更多企业采纳。并且,智能体有望发展成为一个全新的平台,基于智能体的服务模式也将成为主流,智能体将成为主流交互模式。
2025-07-17 07:30:00
1116
原创 程序员学长 | 终于把 Seq2Seq 算法搞懂了!
本文介绍了Seq2Seq(序列到序列)模型的基本原理及应用。该模型通过编码器-解码器架构处理变长序列数据,适用于机器翻译、文本生成等NLP任务。编码器将输入序列转换为固定大小的上下文向量,解码器基于该向量逐步生成目标序列。文章详细解析了模型结构、工作流程及优缺点,并提供了使用PyTorch实现英德机器翻译的完整代码示例,包括数据处理、模型构建、训练评估等环节。最后展示了模型的实际翻译效果,验证了Seq2Seq在序列转换任务中的实用性。
2025-07-17 06:15:00
462
原创 python | Github 3.1k star,一个有趣的 Python 库--pycryptodome!
pycryptodome是一个功能强大的Python密码学库,支持AES、RSA等多种加密算法,提供哈希计算、数字签名等功能。该库具有高性能C语言实现、安全默认参数和跨平台兼容性,适用于网络安全、数据保护等场景。文章介绍了其安装方法,并演示了对称加密(AES)、哈希算法(SHA)、随机数生成等基础功能,以及RSA加密、数字签名等高级应用。通过用户密码存储和文件加密的实际案例,展示了该库在提升系统安全性方面的实用价值,是Python生态中优秀的密码学解决方案。
2025-07-16 17:11:54
750
原创 阿里云开发者 | 万字综述,讲一讲这两年大模型这整个领域到底发展了哪些方面
本文系统回顾了2023-2025年大模型领域的技术演进,指出发展轨迹从单纯追求规模(Scaling Laws)转向三大新支柱:效率、推理和智能体能力。在效率方面,MoE架构和新型注意力机制(如MLA)显著降低了计算成本;推理环节通过"思考预算"机制实现了复杂问题解决能力;智能体技术则让模型具备工具使用能力。当前行业呈现多元化竞争格局:OpenAI专注推理智能体,DeepSeek推动开源MoE创新,Google打造分层产品体系。基准测试也从传统NLP任务转向更复杂的推理和编码评估。
2025-07-16 17:06:18
1140
原创 Coggle数据科学 | Kaggle赛题解析:MAP绘制学生数学误解
本文来源公众号,仅用于学术分享,侵权删,干货满满。赛题名称:MAP - Charting Student Math Misunderstandings赛题类型:自然语言处理赛题任务:为学生的解释提供候选误解建议。
2025-07-15 21:38:40
247
原创 集智书童 | YOLOv7插上时序的翅膀 | 轻量级时序融合策略实现MOT20Det数据集85.5% mAP
1.对于大模型提升有限• YOLOv7等高性能模型由于本身具有较强的单帧检测能力,多帧输入带来的增益较小(如[email protected]:0.95仅提升0.9%)。2.时间窗口选择敏感• 过大的时间窗口(如9帧)会引入噪声并降低精度,需根据具体任务调整帧数与采样间隔。3.未探索自适应帧选择机制• 当前采用固定帧数或固定间隔采样,未来可结合动态帧选择以进一步优化性能。4.融合方式仍较简单• 虽然早期融合效果优于分组卷积,但仍未引入更复杂的时序建模机制,可能限制了更深层次的时间信息挖掘。
2025-07-15 21:37:45
339
原创 阿旭算法与机器学习 | 【保姆级教程|YOLO11改进】【卷积篇】【6】GSConv混合标准卷积与深度可分离卷积,轻量化同时确保精度与速度提升
本文介绍了如何通过替换YOLO11网络中的常规卷积模块为更高效的GSConv模块来提升性能。GSConv结合标准卷积和深度可分离卷积,在保持精度的同时实现轻量化。文章详细展示了源码修改步骤,包括新建模块文件、修改网络解析函数和配置文件,并提供了替换主干网络卷积的具体示例。修改后的模型训练验证了新结构的有效性。该方法为YOLO11的轻量化改进提供了可行方案。
2025-07-14 16:42:30
477
原创 周报 | 25.7.7-25.7.13文章汇总
本周技术周报精选了多篇前沿AI研究文章,涵盖DeepSeekV2的MLA注意力机制改进、AnyI2V图像动画生成技术、VISTA股市分析模型、YOLOv12检测器突破、谷歌AI编程里程碑、生物识别大模型等热点。重点包括:多头潜在注意力压缩KV缓存提升推理速度、点云草图秒变动画技术、A²机制实现实时检测突破、AI代码生成反超人类水平、2亿生物图像训练物种识别模型等创新成果。这些研究展示了AI在计算机视觉、自然语言处理、目标检测等领域的快速进展。
2025-07-14 16:35:37
400
原创 集智书童 | 小目标检测破局者 | MAFE R-CNN以多线索样本选择+类别感知特征增强显著超越Faster R-CNN
1.计算成本• 虽然MAFE R-CNN在性能上有显著提升,但其多阶段设计可能增加推理时间,影响实时性。2.超参数敏感性• MCsS中的最大正样本数量(k)和类别置信度权重(α)对性能有较大影响,需要精心调整。3.扩展性挑战• 方法在处理更复杂场景(如极端光照条件或更多类别)时的鲁棒性尚未完全验证。4.依赖高质量标注• 类别感知记忆模块的有效性依赖于高质量的真实标注数据,可能在标注不准确的情况下表现不佳。
2025-07-13 21:43:03
867
原创 马哥Linux运维 | Redis集群部署与性能优化实战
Redis集群部署与性能优化是一个系统工程,需要从硬件资源、系统配置、Redis参数等多个层面进行综合考虑。通过本文介绍的实战技术,运维工程师可以构建稳定、高效的Redis集群环境。关键要点包括:合理的集群架构设计、科学的性能优化配置、完善的监控告警体系,以及可靠的故障恢复机制。在实际生产环境中,还需要结合具体业务场景进行调优,持续监控和改进系统性能。这篇文章涵盖了Redis运维的核心技术点,代码示例丰富且实用,希望对您的运维工作有所帮助。文末福利THE END!
2025-07-13 21:42:40
369
原创 AI生成未来 | AI一眼认出95万物种,分辨雄雌老幼,2亿生物图像炼成“生命视觉”大模型
BIOCLIP 2 证明了“把正确的监督做大”同样能在专业领域复刻大模型的涌现属性——不仅准确,而且懂生物。项目主页:https://imageomics.github.io/bioclip-2/Demo网址:https://huggingface.co/spaces/imageomics/bioclip-2-demo论文网址:https://arxiv.org/abs/2505.23883THE END!
2025-07-10 21:32:39
910
原创 新智元 | AI编程里程碑!谷歌AI自己写代码惊呆工程师,GPU内核算法反超人类21%
本文来源公众号,仅用于学术分享,侵权删,干货满满。谷歌的AlphaEvolve,还在不断创造新的奇迹。而就在刚刚,patched.codes的联合创始人兼CTO Asankhaya Sharma,用基于AlphaEvolve论文的开源实现OpenEvolve,成功自动发现了高性能的GPU内核算法。具体来说,通过自我进化代码,它自动发现了一套在Apple Silicon上远超手动优化的GPU Metal核函数。
2025-07-09 21:43:44
789
原创 集智书童 | YOLO家族一路走来,YOLOv12为什么可以这么强?A²机制破局,登顶实时检测巅峰
1.硬件约束下的边缘部署挑战:尽管YOLOv12在高端GPU上表现出色,但其对内存和计算资源的需求限制了其在低功耗边缘设备(如NVIDIA Jetson Nano、树莓派)上的应用。2.训练复杂性增加:基于注意力的模块需要更多的FLOPs和内存带宽,导致训练成本高昂,尤其对于GPU资源有限的用户。3.数据集依赖性:YOLOv12的优越精度依赖于大规模数据集(如MS COCO和OpenImages),但在小规模或分布不平衡的数据集上表现可能受限。4.任务扩展的局限性。
2025-07-09 21:42:26
776
原创 Coggle数据科学 | 大模型理解股市“图”与“文”:VISTA模拟专业股票操盘手 | Arxiv 论文
《VISTA框架:多模态大模型提升股票预测准确率》摘要 VISTA创新性地结合股票走势图与历史价格数据,通过视觉-语言模型(VLM)进行多模态分析。研究表明,相比纯文本模型,VISTA的预测性能最高可提升89.83%。该框架模拟专业交易员认知方式,通过折线图识别技术形态(如阻力位、下降三角形),弥补了数值数据在模式识别上的局限。实验采用五组LLM-VLM模型对比,结果表明视觉输入显著降低40%-80%的MSE误差。虽然思维链提示在多数情况下有效,但模型表现仍受计算资源和黑箱特性限制。该研究为金融时间序列分析
2025-07-08 17:14:18
1168
原创 极市平台 | ICCV 2025 | 让任意图像‘活’起来,颠覆视频生成!AnyI2V:点云、草图都能秒变动画!
AnyI2V是一种创新的图像到视频生成框架,能够将点云、草图等任意模态图像作为首帧输入,结合用户定义的运动轨迹生成动画。该框架通过结构保持特征注入、跨帧对齐和动态语义掩码生成三项核心技术,无需额外训练即可实现高效灵活的视频生成。实验表明,AnyI2V在多样化场景中展现出卓越性能,支持多模态混合输入和内容编辑,显著提升了视频生成的可控性和多样性。该方法为3D数据生成、风格化视频等应用提供了新的可能性,未来有望进一步优化运动一致性和复杂场景处理能力。
2025-07-08 17:07:05
1175
原创 周报 | 25.6.30-25.7.6文章汇总
本周技术周报汇总了多篇AI与编程领域的优质文章,涵盖GRPO算法原理、本地模型实践、工业检测数据集、微小目标检测、Agent框架、GPU参数解读等热点内容。重点推荐DeepSeek群体优化策略、动态神经网络DPNet、4032分辨率ViT模型等前沿技术解析,以及Python多进程通信优化等实用技巧。多篇教程类文章提供详细实践指南,适合开发者学习参考。所有文章均来自CSDN技术社区,涵盖计算机视觉、深度学习、Python编程等多个方向的最新研究成果和实践经验。
2025-07-07 17:12:44
369
原创 数据派THU | 一文通透DeepSeek V2——通俗理解多头潜在注意力MLA:改进MHA,从而压缩KV缓存,提高推理速度
《DeepSeekV2技术解析:MLA与DeepSeekMoE的创新突破》 本文深入解析了DeepSeekV2的两大核心技术突破: 多头潜在注意力(MLA):通过低秩键值联合压缩技术,显著降低推理时的KV缓存开销(仅需传统MHA的2.25组GQA缓存),同时保持优于MHA的性能表现。MLA创新性地解耦了信息存储与旋转编码,解决了RoPE与低秩压缩的兼容性问题。 DeepSeekMoE架构:采用细粒度专家分割和共享专家隔离策略,在相同激活参数规模下大幅超越传统MoE。配合设备限制路由和三层平衡损失机制(专家级
2025-07-07 16:56:32
1531
原创 OpenCV与AI深度学习 | 使用OpenCV实现球跟踪和落点预测
本文介绍了一种基于OpenCV的球体跟踪和落点预测系统。通过HSV颜色检测定位球体,使用cvzone.findContours()追踪运动轨迹,并采用多项式回归建模球的运动路径。系统能预测球体是否会落入设定的"篮筐"区域(x坐标330-430),并在视频中实时显示预测结果(绿色"Basket"或红色"NoBasket")。该项目整合了Python、OpenCV、Cvzone和NumPy等技术,实现了从球体检测到轨迹预测的完整流程。
2025-07-06 02:30:00
380
原创 python | Python C3算法多重继承顺序解析机制
本文深入解析了Python中多重继承的C3算法,探讨了其原理、实现机制和实际应用。C3算法通过本地优先级规则和单调性规则生成方法的线性解析顺序,解决了多重继承中的冲突问题。文章详细演示了C3算法的实现过程,并分析了复杂继承场景(如菱形继承)的处理方式。同时展示了C3算法在混入类(Mixin)和框架扩展中的实际应用案例,说明如何利用该算法设计灵活、可维护的代码架构。最后强调理解C3算法对Python面向对象编程的重要性,帮助开发者更好地运用多重继承特性。
2025-07-06 01:45:00
417
原创 菜鸟学Python | 10个免费的DeepSeek使用平台
本文介绍了10个可免费使用DeepSeek AI模型的平台,包括: 1)官方版本(含R1/V3模型和联网功能) 2)硅基流动(新用户送14元体验额度) 3)硅基流动+Chatbox组合(可保存聊天记录) 4)科技部超算互联网(提供多个蒸馏版模型) 5)纳米搜索(含专线和满血版) 6)各大云平台(华为云、阿里云等) 7)华为小艺助手 8)秘塔AI搜索 9)Poe与Lambda海外平台 10)英伟达(邮箱注册即可使用) 文章对各平台特点和使用方法进行了简要说明,为用户提供多样化选择方案。
2025-07-05 16:54:38
722
原创 AI小智 | Agent 部署全解析:LangGraph团队实战洞察
智能Agent部署面临长时执行、异步协同和流量突发等独特挑战,需具备一键上线、多端API支持、水平扩展、状态持久化、可视化调试和多租户权限六大核心能力。文章提出通用部署架构方案:通过CI/CD流水线实现一键化部署,提供多协议接口支持弹性交互,采用分布式数据库和Redis缓存保障状态持久化,并构建可视化监控与团队协作平台。强调Agent商业化落地需基础设施与运维能力并重,建议开发者定期演练故障恢复流程,构建完整的部署运维体系。
2025-07-05 16:45:17
833
原创 江大白 | 小白秒懂:GPU产品核心参数规格解读!
本文来源公众号,仅用于学术分享,侵权删,干货满满。相信很多朋友对GPU的“硬核参数”是一头雾水:什么是算力?显存带宽到底意味着什么?功耗高低又有多大影响?本文将用最直观的方式,一步步帮大家搞懂GPU卡的核心参数。希望对大家有所帮助。
2025-07-04 20:30:33
651
原创 python | Python多进程数据传输慢?试试这两种通信方式
Python多进程通信是现代高性能应用开发的重要技术基础。管道通信以其低延迟和高效率的特点,为简单的进程间数据交换提供了理想解决方案,特别适合父子进程之间的直接通信场景。队列通信则凭借其强大的并发支持和完善的异常处理机制,成为复杂分布式任务处理系统的首选方案。在实际应用中,开发者需要根据系统的具体需求来选择合适的通信方式。对于追求极致性能的实时系统,管道的简洁性和高效性不可替代。THE END!大家有推荐的公众号可以评论区留言,共同学习,一起进步。
2025-07-04 20:29:41
852
原创 江大白 | 支持任意分辨率的Vision Transformer,4032×4032超大分辨率,性能完爆DeiT等模型(附论文及源码)
本文提出了一种突破性的视觉Transformer架构ViTAR,解决了传统ViT在不同图像分辨率间适应性受限的问题。ViTAR通过两大核心技术实现了显著改进:自适应标记合并(ATM)模块动态调整分辨率,模糊位置编码(FPE)提供跨分辨率一致的位置感知。实验表明,ViTAR在1120x1120分辨率下达到83.3%的top-1准确率,4032x4032下仍保持80.4%,同时计算成本大幅降低。
2025-07-03 17:02:51
755
原创 kaggle竞赛宝典 | 智能体框架:11 个顶级 AI Agent 框架!
【AI Agent框架指南】本文介绍了11个顶级开源AI Agent框架,帮助开发者构建自主智能系统。这些框架从简单聊天机器人发展为支持多步推理、工具使用和协作的复杂平台。核心框架包括:LangChain(模块化设计)、微软AutoGen(多Agent协作)、CrewAI(团队模拟)、Semantic Kernel(企业级方案)等。评估标准涵盖易用性、扩展性和社区支持。新兴趋势显示多Agent系统和简化开发接口受关注。选择框架需考虑项目需求、编程语言和集成能力。
2025-07-03 16:44:18
974
原创 集智书童 | 微小目标检测新标杆 | DPNet首创动态神经网络范式,微小目标检测效率跃升35%!
本文提出动态池化网络(DPNet),首创将动态神经网络思想应用于微小目标检测领域。针对传统方法存在的计算冗余和特征分布不一致问题,DPNet通过三大创新实现突破:1)引入可调节的下采样因子动态调整特征图分辨率;2)设计自适应归一化模块(ANM)解决多尺度训练中的特征分布差异;3)开发轻量级下采样因子预测器(DFP)实现输入感知的资源分配。
2025-07-02 16:03:44
898
原创 Coggle数据科学 | JointRank:基于重叠分块与PageRank进行单次并行重排序
针对信息检索系统中大规模候选集排序的挑战,JetBrains研究员提出JointRank方法。该方法通过精心设计重叠分块实现单次并行推理:将文档分成多个重叠块,并行使用列表式排序模型处理各块,构建竞技图反映文档间相对优劣,最后用PageRank等算法重建全局排名。实验证明,该方法在TRECDL-2019等数据集上显著优于传统滑动窗口排序等技术,既保持FullContextListwise的低延迟(2秒),又将nDCG@10指标从61.76提升至69.10。
2025-07-02 15:30:41
799
原创 OpenCV与AI深度学习 | CVPR 2025 | 工业异常检测新突破!复旦&腾讯打造Real-IAD D³多模态数据集
复旦大学联合腾讯等机构推出工业异常检测新突破Real-IADD³数据集,包含8450个多模态样本(RGB、伪3D、高精度3D点云),精度达0.002毫米。基于该数据集提出的D³M多模态融合方法在CVPR2025发表,检测性能显著优于单/双模态方法。这是Real-IAD系列第二篇工作,首篇已被CVPR2024收录。该研究为工业质检提供了更可靠解决方案,数据集已开源。
2025-07-01 14:06:01
934
原创 Datawhale | 本地模型接入本地MCP实践!保姆教程来了(必须收藏!)
本文详细介绍了如何将本地大语言模型接入MCP(ModelContextProtocol)框架实现工具调用能力。MCP协议由Anthropic公司提出,通过客户端-服务器架构使LLM能够调用各类外部工具(如天气查询、股票信息等)。文章对比了Stdio和SSE两种连接模式,重点演示了使用FastMCP库创建本地MCP服务(端口4200)并与vLLM部署的Qwen模型(端口8000)交互的全过程。
2025-07-01 10:45:33
1187
原创 周报 | 25.6.23-25.6.29文章汇总
本周技术文章汇总涵盖多个AI与计算机视觉领域的热点内容:YOLOv13系列文章占据主导,包括清华大学提出的超图增强检测模型和江大白对YOLO系列10年演变的深度解析;Transformer目标检测、MobileCLIP轻量级分类方案等创新算法获得关注;Python实用技巧如datetime模块和omegaconf库也入选周报。此外,ICLR2025的4D场景生成技术、人工智能代理分级实现等前沿研究同样值得关注。这些优质内容将持续更新,欢迎读者推荐学习资源共同进步。
2025-06-30 10:23:08
311
原创 ChallengeHub | DeepSeek 背后的数学原理:深入探究群体相对策略优化 (GRPO)
本文介绍了DeepSeek团队提出的群体相对策略优化(GRPO)算法,这是一种用于增强大型语言模型推理能力的强化学习方法。GRPO通过比较同一问题生成的多个回答来进行相对评估,避免了传统PPO算法对单独价值模型的依赖,从而降低了计算成本。文章详细解析了GRPO目标函数的三个关键组成部分:策略比值、裁剪目标和KL散度正则化,并通过教学类比解释了其工作原理。
2025-06-30 10:20:00
801
原创 python | omegaconf,一个非常nice的 Python 库!
在现代软件开发中,配置管理是一个关键问题。Python的omegaconf库提供了一个灵活且强大的配置系统,它支持从多个来源加载配置,包括YAML文件、命令行参数和环境变量。通过其层次化的配置结构和强大的插值功能,omegaconf能够优雅地处理各种复杂的配置需求,特别适合于大型项目和机器学习应用。
2025-06-28 18:35:50
324
原创 AI新智力 | AI|大模型入门(四):检索增强生成(RAG)
“仅凭Prompt工程根本无法满足人们日益增长的大模型需要,鉴于大模型本身诸多缺陷,比如不能及时更新知识、上下文有限等,人们开始给大模型加入插件,引入向量数据库,把数据索引进向量数据库,再召回数据,再做Prompt工程,这样就可以使用最新的知识和更准确的知识,这种方法叫做检索增强生成(RAG)。”
2025-06-28 18:19:18
794
原创 机器之心 | ICLR 2025 Spotlight | 让城市「动」起来!DynamicCity突破4D大场景生成技术边界
上海人工智能实验室等机构提出DynamicCity框架,突破4D大场景生成技术。该研究通过HexPlane特征降维和扩散模型,实现了动态城市场景的高效建模,支持轨迹引导、指令驱动等可控生成方式。相比现有静态生成方法,DynamicCity在生成质量、训练速度和内存消耗方面取得显著进步,为自动驾驶仿真等应用提供了更真实的虚拟环境。该成果已被ICLR2025接收为Spotlight论文。
2025-06-27 18:17:41
1330
原创 数据派THU | 独家|5 个难度级别的人工智能代理(含完整代码实现)
《AI代理设计的五个难度级别:从基础工具到系统架构》 本文分享了构建人工智能代理的五个渐进式难度级别,每个级别都配有完整代码实现。第一级是基础工具调用代理;第二级添加知识库和短期记忆;第三级引入长期记忆和推理能力;第四级实现多代理协作;第五级则升级为完整的代理系统架构。作者通过自身失败案例强调,成功的代理设计关键在于扎实的基础架构,而非盲目追求复杂性。文章特别指出,清晰的边界、可靠的推理和有效的记忆机制是构建有效AI代理的核心要素,建议开发者循序渐进地根据实际问题需求增加系统复杂度。
2025-06-27 17:37:30
991
原创 江大白 | 2万字深度长文,拆解YOLOv1-YOLOv13的十年全面进化!(推荐收藏!)
YOLO目标检测算法十年发展与未来展望 YOLO(You Only Look Once)系列模型自2015年问世以来,彻底革新了实时目标检测领域。本文系统梳理了从YOLOv1到最新YOLOv13的十年演进历程,揭示了各版本在精度、速度和计算效率方面的突破性进展。文章深入分析了YOLO在自动驾驶、医疗影像、安防监控、工业质检和智慧农业等五大领域的变革性应用,并探讨了未来发展方向,包括多模态融合、边缘计算优化以及与AGI系统的整合。
2025-06-26 14:01:40
1747
全国省-市-区城市经纬度汇总.csv
2020-09-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人