
Deep Learning
OcmRaZOR
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习-LeCun、Bengio和Hinton的联合综述
摘要:最新的《Nature》杂志专门为“人工智能 + 机器人”开辟了一个专题 ,发表多篇相关论文,其中包括了LeCun、Bengio和Hinton首次合作的这篇综述文章“Deep Learning”。本文为该综述文章中文译文的上半部分。 【编者按】三大牛Yann LeCun、Yoshua Bengio和Geoffrey Hinton在深度学习领域的地位无人不知。为纪念人工智能提出60周年转载 2015-06-02 10:40:38 · 2873 阅读 · 1 评论 -
七步精通Python机器学习
转自:http://datartisan.com/article/detail/66.html#rd 七步精通Python机器学习 开始。这是最容易令人丧失斗志的两个字。迈出第一步通常最艰难。当可以选择的方向太多时,就更让人两腿发软了。 从哪里开始? 本文旨在通过七个步骤,使用全部免费的线上资料,帮助新人获取最基本的 Python 机器学习知识,直至成为博学的机转载 2016-01-18 15:33:16 · 983 阅读 · 0 评论 -
Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)
转自:http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei) Deep Neural Networks, especially Convolutiona转载 2015-11-17 09:50:20 · 1373 阅读 · 0 评论 -
【Yoshua Bengio 亲自解答】机器学习 81 个问题及答案 (部分)
【Yoshua Bengio 亲自解答】机器学习 81 个问题及答案 (部分) 新智元编译1 来源:Quora 译者:张巨岩 王婉婷 李宏菲 戴秋池 这是 Quora 的最新节目,针对特定话题进行系列的问答。如果你不了解 Quora,可以把它看作美国版的知乎,不过里面大咖云集,奥巴马、Elon Musk、Bill Gates 都会在上面回答问题。转载 2016-01-25 08:43:51 · 8055 阅读 · 0 评论 -
神经网络浅讲:从神经元到深度学习
转自:http://www.cnblogs.com/subconscious/p/5058741.html 神经网络浅讲:从神经元到深度学习 神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向--深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术。 本文以一种简单的,循序的方式讲解神经网络。适合转载 2016-01-13 15:27:52 · 1068 阅读 · 0 评论 -
机器学习算法中如何选取超参数:学习速率、正则项系数、minibatch size
转自:http://blog.csdn.net/u012162613/article/details/44265967 本文是《Neural networks and deep learning》概览 中第三章的一部分,讲机器学习算法中,如何选取初始的超参数的值。 学习速率(learning rate,η) 运用梯度下降算法进行优化时,权重的更新规则中,在梯度转载 2015-10-15 09:35:23 · 694 阅读 · 0 评论 -
Caffe AlexNet网络
转自: http://blog.sina.com.cn/s/blog_eb3aea990102v47i.html 在2012年的时候,Geoffrey和他学生Alex为了回应质疑者,在ImageNet的竞赛中出手了,刷新了image classification的记录,一举奠定了deep learning 在计算机视觉中的地位。后边的故事大家都知道了,deep learning一统天转载 2015-09-09 15:08:31 · 5112 阅读 · 0 评论 -
Random Ponderings - A Brief Overview of Deep Learning
转自:http://yyue.blogspot.com/2015/01/a-brief-overview-of-deep-learning.html A Brief Overview of Deep Learning (This is a guest post by Ilya Sutskever on the intuition behind deep learning转载 2015-05-22 15:50:26 · 1223 阅读 · 0 评论 -
在Windows下编译CAFFE并使用其matlab和python接口
转自:http://blog.csdn.net/happynear/article/details/45372231 零、最近更新 2015/05/29 发现上个版本的lmdb.lib使用了别人在vs2013下编译的版本,现改为vs2012版; 2015/05/29 添加了提取任意层特征的matlab接口,使用方法: OUTPUT = caffe('get_features',转载 2015-06-04 14:24:20 · 3462 阅读 · 0 评论 -
(R-CNN)Rich feature hierarchies for accurate object detection and semantic segmentation
文章:《Rich feature hierarchies for accurate object detection and semantic segmentation》 作者:Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik 单位:UC Berkeley ,CVPR2014? 是否开放代码:是 ,转载 2015-06-09 10:27:23 · 970 阅读 · 0 评论 -
(GoogLeNet)Going deeper with convolutions笔记
转自 http://www.gageet.com/2014/09203.php Going deeper with convolutions笔记 Contents Abstract Introduction Related Work Motivation and High Level Considerations Architectural Detai转载 2015-05-25 11:00:11 · 4358 阅读 · 0 评论 -
图像识别中的深度学习
来源:《中国计算机学会通讯》第8期《专题》 作者:王晓刚 深度学习发展历史 深度学习是近十年来人工智能领域取得的重要突破。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域的应用取得了巨大成功。现有的深度学习模型属于神经网络。神经网络的起源可追溯到20世纪40年代,曾经在八九十年代流行。神经网络试图通过模拟大脑认知的机理解决各种机器学习问题。1986年,鲁梅转载 2015-08-13 10:23:52 · 3589 阅读 · 1 评论 -
从Theano到Lasagne:基于Python的深度学习的框架和库
转自:http://www.csdn.net/article/2015-08-01/2825362##1_804311562_10285 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Inceptionism。在这篇文章中,我们将讨论几个不同的深度学习框架,库以及工具。 深度学习是机器学习和人工智能转载 2015-08-04 10:00:33 · 800 阅读 · 0 评论 -
深度卷积网络CNN与图像语义分割
转自:http://xiahouzuoxin.github.io/notes/html/深度卷积网络CNN与图像语义分割.html 级别1:DL快速上手级别2:从Caffe着手实践级别3:读paper,网络Train起来级别4:Demo跑起来 读一些源码玩玩熟悉Caffe接口,写Demo这是硬功夫分析各层Layer输出特征 级别5:何不自己搭个CNN玩玩 Train转载 2015-09-11 09:24:37 · 1297 阅读 · 0 评论 -
Very Deep Convolutional Networks for Large-Scale Image Recognition
转自:http://blog.csdn.net/stdcoutzyx/article/details/39736509 这篇论文是今年9月份的论文[1],比较新,其中的观点感觉对卷积神经网络的参数调整大有指导作用,特总结之。关于卷积神经网络(Convolutional Neural Network, CNN),笔者后会作文阐述之,读者若心急则或可用谷歌百度一下。 本文以下内容即是论文的笔记,笔转载 2015-09-11 10:10:47 · 623 阅读 · 0 评论