《前后端面试题
》专栏集合了前后端各个知识模块的面试题,包括html,javascript,css,vue,react,java,Openlayers,leaflet,cesium,mapboxGL,threejs,nodejs,mangoDB,SQL,Linux… 。
文章目录
- 一、本文面试题目录
-
-
- 1. 什么是Spark?它与Hadoop MapReduce相比有哪些优势?
- 2. Spark的核心组件有哪些?各自的作用是什么?
- 3. 解释Spark的RDD、DataFrame、DataSet三者的区别与联系。
- 4. Spark的运行模式有哪些?请分别简要说明。
- 5. 什么是Spark的惰性计算(Lazy Evaluation)?其作用是什么?
- 6. Spark的宽依赖和窄依赖有什么区别?对Shuffle有什么影响?
- 7. 解释Spark中的Shuffle过程,其主要消耗在哪里?
- 8. Spark的Driver和Executor的角色分别是什么?
- 9. Spark Application和Spark Job的区别是什么?
- 10. 什么是DAG?Spark如何基于DAG进行任务调度?
-
- 二、100道Spark面试题目录列表
一、本文面试题目录
以下是按照要求呈现的Spark相关问题及详细答案:
1. 什么是Spark?它与Hadoop MapReduce相比有哪些优势?
答案:Spark是一个开源的分布式计算系统,提供了高效的数据处理和分析能力。与Hadoop MapReduce相比,Spark具有以下优势:
- 计算速度快:Spark使用内存进行数据缓存和计算,而MapReduce则需要将中间结果写入磁盘,因此Spark在处理迭代算法和