更多内容请见: 机器翻译修炼-专栏介绍和目录
文章目录
一、GPT机器翻译概述
1.1 GPT机器翻译介绍
GPT(Generative Pre-trained Transformer) 系列模型,特别是像GPT-3、GPT-3.5、GPT-4这样的大型语言模型,虽然最初并非专为机器翻译任务设计,但它们在自然语言生成和理解方面表现出的强大能力,使其在零样本(zero-shot)和少样本(few-shot)机器翻译任务中表现非常出色。
与传统的神经机器翻译(NMT)系统(如基于Seq2Seq或Transformer的专用翻译模型)不同,GPT类模型是通用的大型语言模型,通过在海量文本上进行预训练,学习到了丰富的语言知识和跨语言表示能力。它们可以仅通过提示(prompt)来执行翻译任务,而无需针对特定语言对进行专门的训练或微调。
1.2 GPT机器翻译的核心特点
- 基于Transformer架构:采用全注意力机制,能同时关注输入文本的所有位置,有效处理长距离依赖关系
- 上下文理解能力:能理解句子在段落中的含义,能结合前后