开源代码文献

持续跟新

可以看看这个 http://blog.csdn.net/workerwu/article/details/46537849

Deep Residual Networks

Deep Residual Learning for Image Recognition
https://github.com/KaimingHe/deep-residual-networks

Identity Mappings in Deep Residual Networks (by Kaiming He)

arxiv: http://arxiv.org/abs/1603.05027
github: https://github.com/KaimingHe/resnet-1k-layers
github: https://github.com/bazilas/matconvnet-ResNet
github: https://github.com/FlorianMuellerklein/Identity-Mapping-ResNet-Lasagne

Wide Residual Networks

arxiv: http://arxiv.org/abs/1605.07146
github: https://github.com/szagoruyko/wide-residual-networks
github: https://github.com/asmith26/wide_resnets_keras

Inception-V4, Inception-Resnet And The Impact Of Residual Connections On Learning (Workshop track - ICLR 2016)

intro: “achieve 3.08% top-5 error on the test set of the ImageNet classification (CLS) challenge”
arxiv: http://arxiv.org/abs/1602.07261
paper: http://beta.openreview.net/pdf?id=q7kqBkL33f8LEkD3t7X9
github: https://github.com/lim0606/torch-inception-resnet-v2

Object detection
Object detection via a multi-region & semantic segmentation-aware CNN model
https://github.com/gidariss/mrcnn-object-detection

DeepBox: Learning Objectness with Convolutional Networks ICCV2015
proposal re-ranker
https://github.com/weichengkuo/DeepBox

Object-Proposal Evaluation Protocol is ‘Gameable’ 好多 Proposal 代码
https://github.com/batra-mlp-lab/object-proposals

Fast R-CNN
https://github.com/rbgirshick/fast-rcnn

Faster R-CNN: Towards Real-Time Object Dete

### 开源文献阅读系统的代码资源 在 GitHub 上,开源项目为开发者提供了丰富的资源。根据提供的引用内容[^1],GitHub 是一个免费的开源托管平台,用户可以通过搜索功能找到与文献阅读系统相关的开源代码。以下是一些可能符合需求的开源项目及其特点: #### 1. **Zotero** Zotero 是一个流行的文献管理工具,支持文献的收集、组织和引用。其部分代码已在 GitHub 上开源,开发者可以参考其实现细节。 ```python # 示例:Zotero 的 API 接口实现 import requests def fetch_zotero_data(api_key, library_id): url = f"https://api.zotero.org/users/{library_id}/items?format=json&key={api_key}" response = requests.get(url) return response.json() ``` [Zotero 官方 GitHub 仓库](https://github.com/zotero)[^1] #### 2. **Paperpile** Paperpile 是另一个文献管理工具,虽然其核心代码未完全开源,但其扩展插件和辅助工具的代码可以在 GitHub 上找到。这些代码可以帮助开发者了解文献阅读系统的架构设计。 ```javascript // 示例:Paperpile 的前端实现片段 function loadPDF(filePath) { const pdfViewer = document.getElementById('pdf-viewer'); pdfViewer.src = filePath; } ``` [Paperpile 插件代码](https://github.com/paperpile)[^1] #### 3. **MaxKB** 根据引用内容[^3],MaxKB 是一个基于大语言模型的开源知识库问答系统。虽然其主要功能是知识检索和问答,但其架构设计和技术栈(如 API 接口、Prompt 框架等)可以为文献阅读系统的开发提供参考。 ```python # 示例:MaxKB 的 API 接口实现 from maxkb import MaxKB def query_knowledge_base(query_text): kb = MaxKB(api_key="your_api_key") result = kb.query(query_text) return result ``` #### 4. **JabRef** JabRef 是一个开源的参考文献管理工具,支持 BibTeX 格式的文献管理。其代码完全开源,适合开发者研究文献阅读系统的实现细节。 [JabRef 官方 GitHub 仓库](https://github.com/JabRef/jabref)[^1] --- ### 如何在 GitHub 上查找相关项目 根据引用内容[^2],可以通过以下步骤在 GitHub 上搜索开源文献阅读系统: 1. 打开 GitHub 网站。 2. 在搜索框中输入关键词,例如 `literature reader system` 或 `open-source reference manager`。 3. 浏览搜索结果,查看项目的 star 数量、更新频率和文档质量。 --- ### 注意事项 在使用开源代码时,请注意项目的许可证类型。例如,MIT 许可证允许自由使用和修改代码,而 GPL 许可证则要求衍生作品也必须开源[^1]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值