AI摄影 | Stable Diffusion 真人照片转动漫

本文介绍了如何利用AI技术,如StableDiffusion和特定模型,将真实人物照片转换为二次元美男子的案例。教程详细步骤包括准备工具、选择模型、设置参数和生成过程。AIGC技术在图像生成领域的应用和发展前景也被讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是程序员晓晓

相信我们很多人在看过动漫/动画后,都想看一看二次元世界中的自己长什么样子,那今天就以客户照片为例,说说我们如何用 Stable Diffusion,让 AI 帮我们将真实照片转成一个绝美二次元美男子……

客户原图是这样的,希望做个安静的二次元美男子,让我们今天一起见证下~~

01、工具准备

本期教程需要用到controlnet的一个控制类型IP Adapter,利用该控制类型的风格转绘功能,实现真人照片转动漫。(IP Adapter插件请看文末获取本地插件安装包)

需要提前下载两个模型:一个是动漫主模型,一个是VAE外挂放大模型(相关动漫大模型请看文末扫描获取)

另外还需一个SD插件WD1.4tigger,用来把照片的提示词反推出来,(SD插件WD1.4tigger插件请看文末扫描获取)

02、案例讲解

工具安装好,准备开干。

1、反推提示词。

2、选择图片,自动反推提示词,发送到图生图。

3、选择动漫主模型CrispMix_v10Cucumber,

4、选择要转动漫的真人照片

5、设置重绘参数

采样器选DPM++2M Karras,迭代步数20,点击三角尺会自动获取原图尺寸,提示词引导系数设置4,重绘幅度0.4

6、打开controlnet的第一个单元

勾选启动和完美像素,选择控制类型IP-Adapter,预处理器和模型选择相关的。

7 点击生成按钮,搞定。

我们一起看下最终成品效果咋样,

这是原图

转动漫后

这里为了保证原图相似度,重绘幅度调的是0.4,跟原图比较像,你想让AI发挥下,可以调高重绘幅度到0.7(值越大越不像),如下图。

开头客户图片,重绘幅度0.4是这样的

这是重绘幅度0.7的

当然,提示词引导系数值大小,也会影响最终效果,本案例都是基于CFG scale值是4抽的图,你可以尝试下值越大,效果的变化如何。

当你看到此处,恭喜你,已经掌握了目前真人转动漫的最快方法。

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
### 使用ControlNet实现真人图片画效果 #### 准备工作 为了使用ControlNet将真人图像换为画风格,需准备特定环境和资源。文章提及的AI绘画SD整合包、各种模型插件、提示词以及AI人工智能学习资料已经打包并提供下载链接[^2]。 #### 设置环境 安装Stable Diffusion及其相关依赖项之后,加载ControlNet插件到环境中。确保所有组件版本兼容,以便顺利运行。 #### 导入所需库与模块 ```python import torch from diffusers import StableDiffusionPipeline, ControlNetModel from PIL import Image ``` #### 加载预训练模型 选择合适的预训练权重文件用于初始化ControlNet和其他必要的网络结构。 ```python controlnet = ControlNetModel.from_pretrained("path_to_controlnet_weights") pipeline = StableDiffusionPipeline.from_pretrained( "path_to_stable_diffusion_weights", controlnet=controlnet).to("cuda") ``` #### 处理输入图像 读取待处理的真实照片作为输入,并调整尺寸以适应模型需求。 ```python input_image = Image.open("real_person_photo.jpg").convert('RGB') processed_input = preprocess(input_image) # 假设preprocess函数已定义好 ``` #### 应用ControlNet进行推理 通过调用`pipeline()`方法执行前向传播计算,获得最终输出结果——即具有卡通化特征的人物肖像画作。 ```python output_image = pipeline(prompt="a detailed portrait of an anime character", image=processed_input, num_inference_steps=50)[0]["sample"][0] output_image.save("cartoonized_portrait.png") ``` 上述过程展示了利用ControlNet技术框架完成从真实世界摄影动漫艺术形式变的具体操作流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值