AI绘画【Stable Diffusion】ComfyUI-插件进阶教程—超强面部修复工作流

大家好,我是程序员晓晓

今天这期我给大家分享一个AI绘画工具 ComfyUI插件——Impact Pack

这是一个综合节点,这期先介绍下这个插件中的面部修复功能

Impact Pack插件

1、下载插件

在ComfyUI管理器中安装节点,搜索Impact Pack

点击安装,然后重启,这时候右键【新建节点】可以看到多了一个【Impact节点】

2、面部细化

右键【新建节点】-【Impact节点】-【简易】-【面部细化】。

找个节点看起来很复杂,其实很简单

3、节点连接

1)VAE解码节点的图像直接与面部细化节点的图像相连

2)模型、CLIP、VAE均与大模型相连

3)正负面条件与正反关键词相连

4)【新建节点】-【Impact节点】-【检测加载器】

将检测加载器的BBox检测与面部细化的BBox检测相连

PS:这里注意下【检测加载器】需要ultralytics模型,ultralytics就是WebUI中ADetailer插件的修脸模型 ,可以直接将WebUI中的模型直接拷贝过来,如没有该模型,请扫描免费获取哦,获取后直接放到ComfyUI路径下即可

模型原路径:

sd-webui\models\adetailer

拷贝后路径:

ComfyUI\models\ultralytics\bbox

5)【新建节点】-【Impact节点】-【SAM加载器】

将SAM加载器的SAM模型与面部细化的SAM模型相连

其它的参数默认即可

4、保存图像

将右侧的图像节点拉出一个【保存图像】

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
### Stable Diffusion ComfyUI 介绍 Stable Diffusion ComfyUI 是一款基于开源 Stable Diffusion 文本转图像模型的本地图形用户界面 (GUI) 工具,旨在生成高分辨率图像。该工具提供了直观易用的操作界面,使用户能够轻松自定义和控制图像生成的过程,并探索多种创意可能性[^2]。 ### 安装与配置指南 #### 下载安装方法 对于希望在本地环境中运行 ComfyUI 的用户而言,完整的下载和安装指导至关重要。教程涵盖了如何获取必要的软件包、依赖项及其兼容版本的信息,确保整个设置流程顺畅无阻[^1]。 #### 模型与插件安装 除了基础平台外,ComfyUI 支持广泛的第三方扩展功能——通过特定模型或附加组件来增强核心能力。这些额外资源不仅增加了系统的灵活性,还允许创作者根据个人需求定制专属的工作环境。 ### 功能特性解析 #### 用户友好界面设计 ComfyUI 设计之初即考虑到了用户体验的重要性;简洁明了的布局使得即使是初次接触 AI 创作的新手也能快速上手操作。同时,丰富的参数选项满足专业人士追求极致效果的要求。 #### 高效工作流构建 借助于内置节点编辑器的支持,用户可以自由组合不同类型的处理单元(如文本编码、风格迁移等),从而创建个性化的图像合成流水线。这种模块化的设计理念极大地提高了工作效率并促进了创新思维的发展。 #### 特殊技术应用实例 针对某些高级应用场景,比如遮罩修饰重绘(Inpainting),文档中也给出了详尽的手动实践案例分析。这有助于加深理解具体实现细节的同时也为解决实际问题提供了有效途径。 ```python # Python 示例代码片段展示如何加载预训练模型 from comfyui import load_model, generate_image model_path = "path/to/model" image_output = "output/image.png" loaded_model = load_model(model_path) result_img = generate_image(loaded_model, prompt="A beautiful sunset over mountains") result_img.save(image_output) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值