关于div/mod除法和取余的化简及硬件实现

在硬件设计中常会用到整数之间的除法和取余操作,一般而言除法和取余的两个操作数都是变量时,这个算法的实现复杂度包括时间复杂度和空间复杂度是O(N)的,N是被除数和除数的最大位宽【这个复杂度的结论不一定是准确的】。

时间复杂度体现在硬件实现上就是分多少次基础的加减计算上,基础计算越多就需要更多的clk,否则时序无法收敛。

空间复杂度体现在硬件上就是占用内存的大小,或者寄存器的大小。对应的是面积要求。

1.div/mod的几个公式

硬件实现div/mod时,可以从拆分和约分上来降低复杂度。拆分是对于变量和常量(或有限常量集)div/mod都可用的方法。约分是对常量或有限常量集可用的方法。

对于有限常量集的div/mod,它们的复杂度可以做到o(logN).所以硬件在做div/mod的时候,如果发现除数或被除数是比较少的集合,可以不用变量除div/mod这种通用电路。可以根据数据进行优化

floor(a/b)=floor((x+y)/b)\\ =\left\{\begin{matrix}floor(x/b)+floor(y/b) & when\ mod(x,b)+mod(y,b)<b\\ floor(x/b)+floor(y/b) +1& when\ mod(x,b)+mod(y,b)>=b \end{matrix}\right.

mod(a,b)=mod((x+y),b)\\ =\left\{\begin{matrix}mod(x,b)+mod(y,b) & when\ mod(x,b)+mod(y,b)<b\\ mod(x,b)+mod(y,b)-b & when\ mod(x,b)+mod(y,b)>=b \end{matrix}\right.

除法取余的特殊情况有一个公式,在b|a的前提下,即a%b == 0时,(a/b)%mod == a%(mod*b)/b,证明如下:

可参考:

[质因数分解][除法取余]Sumdiv LibreOJ10211_给出a,b求a^b的所有约数之和 mod 9901-CSDN博客

由上面的两个公式可以推导出下面的公式:

如果:
x=kA+y              #y<A
则:
x % AB
=(kA+y) % AB
=(kA%AB + y%AB)%AB  #y<A,所以y%AB=y
=(A(k%B) + y)%AB    #因为k%B必然<=B-1,A(k%B)+y < A(B-1) +A = AB
=A(k%B) + y
x=kA+y y<A
x // (AB)
=(kA+y) // (AB)   #y<A,所以y // AB=0
=kA // AB  
=k//B

例如
x=x[m:b]*(2^b) + x[b-1:0]
则:
x // (2^b)*B
=(x[m:b]*(2^b) + x[b-1:0]) // (2^b)*B
=x[m:b]//B

 2.div/mod的RTL实现

这里只讨论对固定整数求div/mod

在硬件实现中对2^n取div和mod是比较简单的,非2的幂次就会复杂一些。设除数为y,被除数为x则可以将y表示为:

y=AB
 =(2^m)B
其中A=2^m

 x // y
=x[b:m] // B

 x % y
=(x[b:m] % B)<<m + x[m-1:0]

经过化简之后变成了对B的div和mod,从上面的说明可知,B一定是一个奇数。这个时候可以考虑和B附近的2的幂次数做个比较,比如:

2^n<B<2^(n+1)
对x//B用(x>>n)-a或者(x>>(n+1))+b来表示
其中a/b考虑是不是可以找到一些规律,这里
先给出这么个思路

<think>首先,问题是要满足条件的整数元组 (a, b, c) 的个数,模 998244353。条件是: 1. 1 ≤ a, b, c ≤ N 2. a, b, c 是成对不同的(即互不相同) 3. a 除以 b 的数等于 c。更精确地说,是 a mod b = c。 在数学中,a mod b 是 a 除以 b 的数,所以条件是 a mod b = c。 但 c 必须满足 0 ≤ c < b,因为数总是小于除数。同时,根据问题,c 的范围是 1 ≤ c ≤ N,但数 c 必须小于 b,并且由于 c ≥ 1,b 必须至少为 2(因为如果 b=1,数只能是 0,但 c≥1,矛盾)。 此外,a, b, c 都必须在 1 到 N 之间,且互不相同。 所以,我需要计算满足: - 1 ≤ a, b, c ≤ N - a ≠ b, a ≠ c, b ≠ c - a mod b = c 的元组 (a, b, c) 的数量。 由于 N 可以大到 10^12,我不能使用 O(N) 或 O(N^2) 的算法,必须找到更高效的方法。 首先,回忆 a mod b = c 意味着 a = k*b + c 对于某个整数 k ≥ 0,且 0 ≤ c < b。但这里 c ≥ 1,所以 1 ≤ c ≤ b-1。 因此,c 在 1 到 b-1 之间。 现在,a = k*b + c,且 a ≤ N。 由于 a ≥ 1,k ≥ 0。 另外,a, b, c 互不相同。 所以,对于固定的 b,我可以尝试计算可能的 c k。 b 的范围是 2 到 N,因为如果 b=1,c 必须是 0,但 c≥1,所以 b≥2。 对于每个 b,c 的范围是 1 到 b-1。 然后 a = k*b + c,且 a ≤ N。 k 必须满足 k*b + c ≤ N,且 k ≥ 0。 由于 c ≥ 1,a ≥ 1 自动满足。 现在,a 必须在 1 到 N 之间,所以 k*b + c ≤ N。 k 的最大值是 floor((N - c)/b)。 但 c 从 1 到 b-1,所以对于每个 b,我可以计算 a 的个数。 但 a 必须与 b c 不同,并且 b c 已经不同,因为 c < b。 b c 不同:由于 c < b 且 b ≥ 2,c ≤ b-1 < b,所以 b ≠ c 总是成立。 现在,a 必须 ≠ b ≠ c。 a = k*b + c。 a ≠ b:如果 a = b,则 k*b + c = b,所以 c = b(1 - k)。但 c ≥ 1,b ≥ 2,如果 k=0,c=b,但 c ≤ b-1,矛盾。如果 k≥1,c = b(1-k) ≤ 0,但 c≥1,矛盾。所以 a ≠ b 总是成立?让我们检查。 如果 k=0,a = c。c 是数,1 ≤ c ≤ b-1,所以 a = c。 但 a c 必须不同,因为元组要互不相同。所以当 a = c 时,问题。 类似地,a b:a = k*b + c,如果 k=0,a=c < b,所以 a ≠ b。如果 k≥1,a ≥ b + c ≥ b + 1 > b,所以 a > b,因此 a ≠ b。所以 a ≠ b 总是成立,因为当 k=0,a=c < b,当 k≥1,a ≥ b + c ≥ b+1 > b。 所以,唯一的问题是当 a = c 时,这发生在 k=0。 也就是说,当 k=0,a = c。 但在这种情况下,a c 是同一个数,但元组要 a, b, c 互不相同,所以当 a = c 时,不满足条件。 因此,对于每个 b c,a 可以是 k*b + c 对于 k ≥ 0,但 a ≤ N,且 a ≠ c,这等价于排除 k=0 的情况,因为当 k≥1,a = k*b + c ≥ b + c ≥ b + 1 > c(因为 c ≤ b-1 < b),所以 a > c,因此 a ≠ c。 当 k=0,a=c,所以我们需要排除 k=0。 此外,a 必须不同于 b,但我们看到 a ≠ b 总是成立。 所以,对于固定的 b c,a 的值是 a = k*b + c 对于 k ≥ 1,且 a ≤ N。 也就是说,a 必须是 b 的倍数加上 c,且 a ≥ b + c(因为 k≥1),且 a ≤ N。 由于 c ≥ 1,a ≥ b + 1 > b。 现在,对于固定的 b c,满足 a = k*b + c ≤ N 且 k ≥ 1 的 a 的数量是满足 b + c ≤ k*b + c ≤ N 的 k 的数量,即 k*b ≤ N - c。 由于 k ≥ 1,且 k ≤ floor((N - c)/b)。 但 c 从 1 到 b-1,所以对于每个 b,我需要计算 sum_{c=1}^{b-1} floor((N - c)/b) 因为对于每个 c,a 的数量是 floor((N - c)/b)?等一下。 a = k*b + c ≤ N,k ≥ 1,所以 k ≤ floor((N - c)/b) k 的最小值是 1,最大值是 floor((N - c)/b) 所以 k 的数量是 max(0, floor((N - c)/b) ) 由于 k ≥ 1,需要 floor((N - c)/b) ≥ 1,否则为 0。 但更精确地说,k 的数量是 floor((N - c)/b) ,如果 floor((N - c)/b) ≥ 1,但如果 (N - c)/b < 1,则可能为 0。 实际上,k 的数量是 floor((N - c)/b) ,但只有当 (N - c)/b ≥ 1 时,否则为 0?不。 例如,如果 N - c < b,则 floor((N - c)/b) = 0,且 k ≥ 1 要 a = k*b + c ≥ b + c > N 如果 N - c < b,所以确实为 0。 所以,对于每个 c,a 的数量是 floor((N - c)/b) ,但这是 k 的数量,即满足 a ≤ N 的 a 的数量。 k 的数量是 floor((N - c)/b) ,因为 k 从 1 到 floor((N - c)/b),包括在内,前提是 floor((N - c)/b) ≥ 1,否则为 0。 但 floor((N - c)/b) 可以是 0,当 N - c < b 时,即 c > N - b。 由于 c ≤ b-1,如果 b-1 > N - b,即 2b > N+1,则可能。 但无论如何,表达式 floor((N - c)/b) 在 (N - c)/b < 0 时给出负数,但由于 c ≤ b-1 ≤ N(因为 b≤N),N - c ≥ N - (b-1) ≥ 1(因为 b≤N),所以 N - c ≥ 1 > 0,所以 floor((N - c)/b) ≥ 0。 当 N - c < b 时,floor((N - c)/b) = 0,这是正确的。 所以,对于固定的 b c,满足条件的 a 的数量是 floor((N - c)/b) 。 但这是当 k≥1 时,我们排除了 a=c 的情况。 在元组中,a, b, c 是固定的,我们需要确保它们互不相同。 我们有 b c 不同,因为 c < b。 a b 不同,如我们所见。 a c 不同,因为我们排除了 k=0,所以 a ≠ c。 所以,是的,对于每个 b c,满足条件的 a 的数量是满足 a = k*b + c ≤ N 且 k≥1 的 k 的数量,即 floor((N - c)/b) 。 但 floor((N - c)/b) 可能为 0,此时没有这样的 a。 现在,对于固定的 b,c 从 1 到 b-1,所以对于每个 b,满足条件的 (a,c) 对的数量是 sum_{c=1}^{b-1} floor((N - c)/b) 然后,由于 b 从 2 到 N,总的元组数是 sum_{b=2}^N sum_{c=1}^{b-1} floor((N - c)/b) 在中,对于每个 b c,我们得到一个 a,所以每个 (a,b,c) 被计数一次。 是的。 所以,答案是 sum_{b=2}^N sum_{c=1}^{b-1} floor((N - c)/b) 现在,我需要计算这个,其中 N 最大为 10^12。 直接计算是 O(N),但 N=10^12 太大,所以需要优化。 我注意到 sum_{c=1}^{b-1} floor((N - c)/b) 可以简化。 令 f(b) = sum_{c=1}^{b-1} floor((N - c)/b) 现在,floor((N - c)/b) = floor(N/b - c/b) 由于 c 从 1 到 b-1,c/b 在 (0,1) 之间。 令 q = floor(N/b),r = N mod b,即 N = q*b + r,0 ≤ r < b。 那么 (N - c)/b = q + (r - c)/b 所以 floor((N - c)/b) = q + floor((r - c)/b) 现在,r - c 的范围是从 r - (b-1) 到 r - 1。 由于 r < b,r - c ≤ r - 1 < b - 1,且 r - c ≥ r - (b-1) ≥ 0 - (b-1) = - (b-1) 所以 (r - c)/b 在 (- (b-1)/b, (b-1)/b) 之间,大于 -1 小于 1。 所以 floor((r - c)/b) 是 -1 或 0。 具体来说,当 r - c ≥ 0 时,floor((r - c)/b) = 0,因为 (r - c)/b < 1。 当 r - c < 0 时,即 c > r,那么 (r - c)/b < 0,且由于 > -1,floor 是 -1。 所以,对于每个 c,有: 如果 c ≤ r,则 floor((N - c)/b) = q + 0 = q 如果 c > r,则 floor((N - c)/b) = q + (-1) = q - 1 现在,c 从 1 到 b-1。 满足 c ≤ r 的 c 的数量:由于 c 是整数,c=1,2,...,min(r, b-1)。但 r < b,所以 c=1 到 r 的个数是 r 个。 满足 c > r 的 c 的数量:c 从 r+1 到 b-1,个数是 (b-1) - r。 因为 c 从 1 到 b-1,总共 b-1 个值。 所以,f(b) = sum = [当 c≤r 时的数量 * q] + [当 c>r 时的数量 * (q-1)] = r * q + [(b-1) - r] * (q - 1) 化简:r q + (b-1-r)(q-1) = r q + (b-1-r) q - (b-1-r) = q [r + (b-1-r)] - (b-1-r) = q (b-1) - (b-1-r) 因为 r + (b-1-r) = b-1。 所以 f(b) = q (b-1) - (b-1 - r) 现在,b-1 - r = (b-1) - r 而 q = floor(N/b),r = N mod b。 但 b-1 - r 可能写成什么形式。 f(b) = floor(N/b) * (b-1) - (b-1 - r) 而 r = N - q b,所以 b-1 - r = b-1 - (N - q b) = b-1 - N + q b 因此 f(b) = q (b-1) - (b-1 - N + q b) = q b - q - b + 1 + N - q b = -q - b + 1 + N 让我仔细计算: f(b) = q (b-1) - (b-1 - r) 代入 r = N - q b 所以 b-1 - r = b-1 - (N - q b) = b-1 - N + q b 因此 f(b) = q(b-1) - (b-1 - N + q b) = q b - q - b + 1 + N - q b = -q - b + 1 + N q b - q b 抵消了,所以 f(b) = -q - b + 1 + N 所以 f(b) = N - b + 1 - q 其中 q = floor(N/b) 所以 f(b) = N - b + 1 - floor(N/b) 这很漂亮! 所以对于每个 b,sum_{c=1}^{b-1} floor((N - c)/b) = N - b + 1 - floor(N/b) 那么总的元组数是 sum_{b=2}^N f(b) = sum_{b=2}^N \left( N - b + 1 - \left\lfloor \frac{N}{b} \right\rfloor \right) 现在,我需要计算 S = sum_{b=2}^N (N - b + 1) - sum_{b=2}^N floor(N/b) 第一项:sum_{b=2}^N (N - b + 1) 令 k = b,从 2 到 N。 N - b + 1 = (N + 1) - b 所以 sum_{b=2}^N [(N+1) - b] = sum_{j=1}^{N-1} j?我们来计算一下。 当 b=2 时,(N+1)-2 = N-1 b=3,(N+1)-3 = N-2 ... b=N,(N+1)-N = 1 所以它是从 1 到 N-1 的。 b=2:值 = N-1 b=3:N-2 ... b=N:1 所以是的,从 k=1 到 N-1 的,即 \frac{(N-1)N}{2} 令 m = N-1,则 sum_{k=1}^m k = m(m+1)/2?不对。 从 1 到 M 的是 M(M+1)/2,但这里是从 1 到 N-1。 所以 sum_{b=2}^N (N - b + 1) = sum_{k=1}^{N-1} k = \frac{(N-1)N}{2} 是的。 现在,第二项:sum_{b=2}^N floor(N/b) 在总中,S = sum_{b=2}^N (N - b + 1) - sum_{b=2}^N floor(N/b) = \frac{(N-1)N}{2} - sum_{b=2}^N \left\lfloor \frac{N}{b} \right\rfloor 但 sum_{b=2}^N floor(N/b) 几乎是从 b=1 到 N 的 floor(N/b) 的,但当 b=1 时,floor(N/1) = N。 在中,b 从 2 开始。 另外,当 b > N 时,floor(N/b)=0,但这里 b≤N。 所以,令 T(N) = sum_{b=1}^N floor(N/b) 那么 sum_{b=2}^N floor(N/b) = T(N) - floor(N/1) = T(N) - N 所以 S = \frac{(N-1)N}{2} - [T(N) - N] = \frac{(N-1)N}{2} - T(N) + N 化简:\frac{N(N-1)}{2} + N - T(N) = \frac{N(N-1) + 2N}{2} - T(N) = \frac{N^2 - N + 2N}{2} - T(N) = \frac{N^2 + N}{2} - T(N) \frac{N(N-1)}{2} + N = \frac{N(N-1) + 2N}{2} = \frac{N^2 - N + 2N}{2} = \frac{N^2 + N}{2} = \frac{N(N+1)}{2} 是的。 所以 S = \frac{N(N+1)}{2} - T(N) 其中 T(N) = sum_{b=1}^N \left\lfloor \frac{N}{b} \right\rfloor T(N) 是约数函数(divisor summatory function),可以在 O(sqrt(N)) 时间内计算。 具体来说,对于 i 从 1 到 sqrt(N),我们可以计算使得 floor(N/k) 为常数的 k 的个数。 标准方法:对于 i 从 1 到 floor(sqrt(N)),计算 floor(N/i),并计算该值的出现次数。 更精确地说:令 k 从 1 到 N,但分组。 设 s = floor(sqrt(N)) 对于 i 从 1 到 s,计算 floor(N/i),并记录该值。 同时,对于每个 i,对应的 k 的范围是当 floor(N/k) = i 时,但更好的方法是: 总 T(N) = sum_{k=1}^N floor(N/k) 这等于 sum_{k=1}^N d(k),其中 d(k) 是 k 的约数个数?不对。 实际上,sum_{k=1}^N floor(N/k) 等于 sum_{ab ≤ N} 1,即不超过 N 的整数对 (a,b) 的数量。 但为了计算,我们可以使用: T(N) = sum_{k=1}^N floor(N/k) = 2 * sum_{k=1}^{floor(sqrt(N))} floor(N/k) - [floor(sqrt(N))]^2 但仅当 sqrt(N) 是整数时才成立,否则需要小心。 标准 O(sqrt(N)) 算法: 令 s = floor(sqrt(N)) 对于 i 从 1 到 s,直接计算 floor(N/i) 然后,对于每个 i,该值出现的次数是使得 floor(N/k) = i 的 k 的数量,即 k 在 (N/(i+1), N/i] 范围内。 更高效:对于 k 从 1 到 floor(N/(s+1)),但或许: 总可以分成两部分: - 当 k <= floor(sqrt(N)) 时,直接。 - 当 k > floor(sqrt(N)) 时,令 k 从 s+1 到 N,但 floor(N/k) 从 floor(N/N)=1 到 floor(N/(s+1)),并且每个值对应一段连续的 k。 具体算法: 令 s = floor(sqrt(N)) 初始化 sum = 0 对于 i 从 1 到 s: sum += floor(N/i) 现在,对于大于 s 的 k,令 j = floor(N/k),那么 j 从 1 到 floor(N/(s+1)) 对于每个 j,满足 floor(N/k) = j 的 k 的范围是从 k_min = floor(N/(j+1)) + 1 到 k_max = floor(N/j) 并且该 j 出现的次数是 k_max - k_min + 1 由于 j <= floor(N/(s+1)) <= floor(N/(sqrt(N))) ≈ sqrt(N),所以 j 最多为 sqrt(N),因此循环次数为 O(sqrt(N)) 在代码中,我们可以令 j 从 1 到 t,其中 t = floor(N/(s+1)),但通常 t <= s,因为当 k > s 时,floor(N/k) <= floor(N/(s+1)) <= s。 实际上,floor(N/(s+1)) <= N/(s+1) < N/s <= sqrt(N),因为 s = floor(sqrt(N)),所以 s^2 <= N < (s+1)^2,因此 N/s <= s + 1/s,但大致如此。 所以,在循环中: 对于 j 从 1 到 floor(N/(s+1)): 但我们需要确保没有遗漏,或者可以这样做: 更简单的方法:在 i 从 1 到 s 的循环之后,我们已经计算了 k 从 1 到 s 的 floor(N/k) 然后对于 k 从 s+1 到 N,令 j = floor(N/k),然后对于每个 j,找出 k 的范围。 由于 j 是递减的,但我们可以令 j 从 1 到 floor(N/(s+1)),但顺序无所谓。 在代码中,通常这样实现: sum = 0 k = 1 while k <= N: j = N // k # 整除,floor(N/k) k_next = N // j + 1 # 使得 floor(N/m) = j 的最大 m 是 floor(N/j),而下一个变化点是 floor(N/j) + 1?等等。 标准方法:令 k = 1 当 k <= N 时: j = N // k k_next = N // (N // k) + 1?等等。 实际上,令 q = floor(N / k),那么满足 floor(N / i) = q 的最大的 i 是 i_max = floor(N / q) 所以,在 k 到 i_max 的范围内,floor(N/i) = q 因此,总 += q * (i_max - k + 1) 然后设 k = i_max + 1 这样,k 每次跳跃,而由于 q 会变化,并且迭代次数是 O(sqrt(N)) 是的。 在伪代码中: def T(N): sum = 0 k = 1 while k <= N: q = N // k # 整数除法,floor(N/k) i_max = N // q # 满足 floor(N/i) = q 的最大 i sum += q * (i_max - k + 1) k = i_max + 1 return sum 是的,这样时间复杂度是 O(sqrt(N)) 现在回到我们的问题。 我们有 S = \frac{N(N+1)}{2} - T(N) 其中 T(N) = sum_{b=1}^N floor(N/b) 但在 S 中,我们有 S = \frac{N(N+1)}{2} - T(N) 但这是元组的总数吗? 让我确认一下。 之前,S = sum_{b=2}^N f(b) = sum_{b=2}^N [N - b + 1 - floor(N/b)] = \frac{N(N+1)}{2} - [T(N) - N] 因为 sum_{b=2}^N floor(N/b) = T(N) - N 而 sum_{b=2}^N (N - b + 1) = \frac{(N-1)N}{2} 那么 S = \frac{(N-1)N}{2} - (T(N) - N) = \frac{N(N-1)}{2} + N - T(N) = \frac{N^2 - N + 2N}{2} - T(N) = \frac{N^2 + N}{2} - T(N) = \frac{N(N+1)}{2} - T(N) 是的。 但这是最终答案吗? 在中,S 是满足 a mod b = c 且 a,b,c 互不相同的三元组 (a,b,c) 的数量,其中 a,b,c 在 1 到 N 之间。 但在这个问题中,元组 (a,b,c) 是有序的,并且我们需要 a,b,c 互不相同。 在我们的推导中,我们假设了 a,b,c 互不相同,并且我们推导出 S 是总数。 但让我用一个小的 N 来验证一下。 N=3。 可能的 b 从 2 到 3。 首先,b=2。 c 从 1 到 1(因为 b-1=1) 那么 a = k*b + c = k*2 + 1,k≥1,且 a≤3。 k=1:a=3 所以 (a,b,c)=(3,2,1) 检查:3 mod 2 =1,且 c=1,正确。且 a,b,c 互不相同:3,2,1 是的。 k=2:a=5>3,无效。 现在,b=3。 c 从 1 到 2。 c=1:a=k*3+1,k≥1,a≤3。k=1:a=4>3,无效。 c=2:a=k*3+2,k≥1,a≤3。k=1:a=5>3,无效。 所以只有一个三元组:(3,2,1) 现在,根据公式,S = \frac{3*4}{2} - T(3) = 6 - T(3) T(3) = sum_{b=1}^3 floor(3/b) = floor(3/1)=3,b=2:floor(3/2)=1,b=3:floor(3/3)=1,总=3+1+1=5 S=6-5=1,正确。 现在,另一个例子:样本输入 N=7,输出 12。 所以计算 S = \frac{7*8}{2} - T(7) = 28 - T(7) T(7) = sum_{b=1}^7 floor(7/b) = b=1:7, b=2:3, b=3:2, b=4:1, b=5:1, b=6:1, b=7:1。总=7+3+2+1+1+1+1=16 S=28-16=12,正确。 完美。 现在,在问题中,N 最多为 10^12,我们需要计算 S = \frac{N(N+1)}{2} - T(N) 模 998244353。 \frac{N(N+1)}{2} 可以直接计算,但要注意 N 很大,所以使用模运算。 但 \frac{N(N+1)}{2} 可能不是整数?不,因为 N 或 N+1 是偶数,所以可以整除。 在模运算中,我们需要计算除以 2 的逆元。 类似地,T(N) 需要高效计算。 现在,输出答案模 998244353。 所以,在代码中,我们需要计算: 令 P = 998244353 首先,计算 sum1 = \frac{N(N+1)}{2} mod P 但 \frac{N(N+1)}{2} 可能很大,但 N<=10^12,所以 N(N+1)/2 <= (10^12 * 10^12)/2 = 5e23,小于 2^80 左右,但在 C++ 中,long long 最大为 2^63-1,约 9e18,所以 5e23 太大。 因此,我们需要在模运算下计算。 所以,sum1 = [N * (N+1) / 2] mod P 但除法由 2,所以乘以 2 在模 P 下的逆元。 由于 P 是质数,2 的逆元是 (P+1)/2 或类似的东西。 具体来说,inv2 = pow(2, P-2, P) 在 Python 中,但在代码中,我们可以计算。 由于 N N+1 是连续的,其中之一是偶数,所以我们可以整除。 在代码中,我们可以做:如果 N 是偶数,则 (N/2) * (N+1) mod P,否则 N * ((N+1)/2) mod P。 但更好的是:计算 temp = N * (N+1) % P,然后乘以 inv2。 类似地,T(N) 需要计算,但 T(N) 是一个很大的数,我们需要 T(N) mod P。 然而,T(N) 可能很大,最大约为 N * sqrt(N)?不,T(N) = sum floor(N/k) ≈ N log N,对于 N=10^12,log N ≈ 28,所以 T(N) ≈ 12e12 * 28?等等,不对。 实际上,T(N) ~ N log N + γ N,但 log N 是自然对数,对于 N=10^12,log N ≈ 27.6,所以 T(N) ≈ 10^12 * 27.6 = 2.76e13,小于 10^14,在 C++ 中 long long 最大为 9e18,所以可以存储为整数,但当我们做减法时,S = sum1 - T(N),sum1 ≈ N^2 / 2 ≈ 5e23,太大了。 N=10^12,N^2/2 = 5e23,而 T(N)≈3e13,所以 S 大约是 5e23,这超出了 64 位整数的范围(最大约 9e18)。 所以,我们必须在模运算中计算,但问题是 S 可能很大,我们需要输出 S mod P。 但 \frac{N(N+1)}{2} T(N) 都是整数,我们需要计算 [ \frac{N(N+1)}{2} - T(N) ] mod P。 由于 P=998244353 是质数,我们可以分别计算两个项 mod P,然后相减。 但 \frac{N(N+1)}{2} mod P 没问题。 T(N) mod P 需要计算,但 T(N) 很大,我们可以在计算 T(N) mod P。 在计算 T(N) 的循环中,我们是在对 q * (i_max - k + 1) ,每次项可能很大,但我们可以 mod P。 问题是 q * (i_max - k + 1) 可能很大,但 q = floor(N/k),k 最多为 N,所以对于小的 k,q 很大,但 i_max - k + 1 是区间长度。 例如,当 k=1 时,q=N,i_max=N,所以项是 N * N,对于 N=10^12,N^2=1e24,在模 P 下可以计算,但在代码中,我们需要使用大整数或模运算。 在 Python 中,整数是任意精度的,所以没问题,但问题可能要高效,而 N=10^12,循环次数是 O(sqrt(N)) ≈ 10^6,所以即使在 Python 中,如果我们小心处理,也应该没问题。 在 C++ 中,我们可以使用 long long,但 N=10^12,q 最多为 10^12,区间长度最多为 N,所以 q * len 最多为 10^24,而 long long 最大为 9e18,所以 10^24 太大,会溢出。 因此,在 C++ 中,我们需要使用 __int128 或模运算。 但最终我们需要的是 T(N) mod P,所以我们可以计算每个项 q * len mod P,然后累加。 类似地,对于 sum1。 所以,在模运算下,计算 sum1 = \frac{N(N+1)}{2} mod P 然后计算 T_mod = T(N) mod P,通过循环计算,每次项为 [q * (i_max - k + 1)] mod P 然后 S = (sum1 - T_mod) mod P 但 sum1 T_mod 是模 P 下的值,所以 S = (sum1 - T_mod) % P,然后如果为负,则加 P。 现在,在循环中,对于每个区间,我们计算 q = floor(N/k),i_max = floor(N / q),然后 len = i_max - k + 1,然后项 = q * len,但我们需要 (q * len) mod P。 q len 可能很大,但我们可以计算 (q mod P) * (len mod P) mod P,但这样不对,因为 q * len 可能不是这样。 例如,q 很大,q mod P 很小,但 len 很大,所以 (q mod P) * len mod P 可能不等于 (q * len) mod P。 实际上,(q * len) mod P = [ (q mod P) * (len mod P) ] mod P?不,不是这样。 例如,q=100, len=100, P=1000, q*len=10000, 10000 mod 1000=0,但 (100 mod 1000=100) * (100 mod 1000=100) =10000 mod 1000=0,相同。 但一般地,[a * b] mod P = [ (a mod P) * (b mod P) ] mod P,是的,这是模运算的性质。 但这里,项是 q * len,其中 q len 是整数,所以 (q * len) mod P = [ (q mod P) * (len mod P) ] mod P 但 len = i_max - k + 1,可能很大,但 i_max k 是整数,len 最多为 N。 在模运算中,我们可以计算 temp = q % P,然后 len % P,但 len 可能很大,但我们可以直接计算 (q * len) % P。 由于 len 最多为 N=10^12,q 最多为 N=10^12,所以 q * len 最多为 10^24,在 C++ 中,我们可以使用 __int128 来存储乘积,然后模 P。 或者,在 Python 中,直接支持大整数,所以没问题。 在代码中,由于时间复杂度是 O(sqrt(N)),对于 N=10^12,sqrt(N)=10^6,所以循环 10^6 次,每次进行一些算术运算,在 Python 中应该能在几秒内完成。 现在,但在问题中,有一个样本:N=7,输出 12,我们得到了。 另一个样本:如果 N=3,输出应该是 1,我们得到了。 但问题要的是元组 (a,b,c),其中 a,b,c 不同,且 a mod b = c。 在我们的推导中,我们假设了这一点,并且它似乎符合样本。 但让我检查一下当 N=2 时的情况。 N=2,b 从 2 到 2。 c 从 1 到 1。 a = k*2 +1,k≥1,a≤2。k=1:a=3>2,无效。所以没有三元组。 公式:S= \frac{2*3}{2} - T(2) = 3 - [floor(2/1)+floor(2/2)] = 3 - (2+1) = 3-3=0,正确。 另一个点:N=1,但约束 N≥3,所以没问题。 在样本输入2中,是 N=7 M=7,但那是另一个问题,这里是单个输入 N。 在这个问题中,输入是 N,输出是元组数量模 998244353。 现在,在代码中,我们需要实现 T(N) 的。 但在我们的 S 中,我们有 S = \frac{N(N+1)}{2} - T(N),而 T(N) = sum_{k=1}^N floor(N/k) 但在中,当 b=1 时,floor(N/1)=N,但在 S 中,我们减去了 T(N),而 T(N) 包括 b=1。 但在表达式中,这是正确的。 现在,对于 N=7,我们有 S=12。 但问题陈述中有一个样本输入 7,输出 12,所以匹配。 现在,在约束中,N 最多为 10^12。 在代码中,我们需要高效计算 T(N)。 如前所述,使用循环,其中 k 从 1 到 N,但 k 跳跃。 在 Python 中,我们可以这样写: def T(N): s = 0 k = 1 while k <= N: q = N // k i_max = N // q s += q * (i_max - k + 1) k = i_max + 1 return s 然后 S = N*(N+1)//2 - T(N) 然后输出 S % 998244353 但 s 可能很大,但 Python 处理大整数没问题。 然而,当 N 很大时,比如 10^12,循环次数大约是 2*sqrt(N) ≈ 2e6,这在 Python 中是可行的。 但在累加 s 时,s 可能达到 10^12 * 10^12 = 10^24,这在 Python 中是可以处理的,但为了模,我们可以在最后模,但 S 可能很大,但我们需要的是 S mod P,所以最好在计算过程中对 T(N) 模,但 T(N) 是整数,我们可以在最后模。 由于我们需要 S mod P,并且 S = A - B,其中 A = N(N+1)//2,B = T(N),我们可以计算 A mod P B mod P,然后相减。 但 B = T(N) 很大,但我们可以计算 B mod P 通过在每个加法步骤中模。 也就是说,在 T(N) 的循环中,不是 s += q * (i_max - k + 1),而是 s = (s + q * (i_max - k + 1)) % P,但这样对吗? 不,因为 q * len 可能很大,但如果我们模,由于我们只关心 mod P,是的。 而且这样更高效,s 保持很小。 同样地,对于 A,计算 A = (N * (N+1) // 2) % P 在 Python 中,我们可以直接计算。 现在,编写代码。 但问题要输出答案,我们需要处理输入。 输入是单个整数 N。 输出是答案 mod 998244353。 现在,在代码中,注意当 k 较小时,i_max 很大,但循环会跳转。 例如,k=1,q = N // 1 = N,i_max = N // N = 1,所以 len = 1-1+1=1,项 = N*1 然后 k=2,q = N//2,i_max = N // (N//2),等等。 是的。 现在,边界情况:当 N=0,但 N>=3。 在 i_max 的计算中,当 q=0,但 q = floor(N/k),当 k>N 时,但在循环中 k<=N,所以 q>=1?当 k=N 时,q= floor(N/N)=1,当 k>N 时,但 k<=N,所以 q >=1,因为 N>=k>=1,所以 floor(N/k) >=1 对于 k<=N。 当 k=N 时,q=1。 所以没有问题。 在代码中,i_max = N // q,这是整数除法。 在 Python 中,// 是整数除法。 现在,实现。 但在累加中,对于 T(N) mod P,我们可以在每次加法时模。 同样,对于 A。 现在,让我们为 N=7 编写代码。 N=7 A = 7*8//2 = 28 T(N): 开始 k=1, q=7//1=7, i_max=7//7=1, len=1-1+1=1, 项=7*1=7 k=2, q=7//2=3, i_max=7//3=2(因为 7//3=2.333,floor=2),len=2-2+1=1?k=2,i_max=2,所以 len=2-2+1=1,项=3*1=3 然后 k=3, q=7//3=2, i_max=7//2=3(7//2=3.5,floor=3),len=3-3+1=1,项=2*1=2 k=4, q=7//4=1, i_max=7//1=7, len=7-4+1=4,项=1*4=4 k=8>7,停止。T(N)=7+3+2+4=16,正确。 在循环中:当 k=4 时,i_max=7,所以 k 从 4 到 7,floor(N/k)=1,因为 N//k=7//4=1,7//5=1,7//6=1,7//7=1,所以 q=1,len=4,项=4。 是的。 在代码中,当 k=4 时,i_max=7,然后 k 变为 8。 现在,在模运算中,对于大 N。 在 Python 中,我们可以这样写: P = 998244353 def main(): import sys data = sys.stdin.read().split() if not data: return N = int(data[0]) # 计算 A = N(N+1)//2 mod P A = (N * (N+1)) // 2 A %= P # 计算 T(N) mod P total_T = 0 k = 1 while k <= N: q = N // k i_max = N // q # 满足 floor(N/i)=q 的最大 i # 区间 [k, i_max] 的长度 len_seg = i_max - k + 1 # 该区间对 T(N) 的贡献是 q * len_seg term = q * len_seg # 这可能很大,但我们需要 mod P # 由于我们需要 mod P,计算 term % P term_mod = term % P total_T = (total_T + term_mod) % P k = i_max + 1 # 现在 S = A - T(N) mod P S = (A - total_T) % P if S < 0: S += P print(S) if __name__ == '__main__': main() 在 term_mod 中,我们计算 term % P,然后加到 total_T 上,total_T 保持 mod P。 由于 term 可能很大,但在 Python 中,% 操作可以处理大整数。 为了效率,在循环中,迭代次数约为 O(sqrt(N)),对于 N=10^12,大约是 2e6,这在 Python 中应该是可行的,但可能有点慢,不过 2e6 次迭代在 PyPy 或优化的 Python 中可能可以在 1 秒内完成,但在 CP Python 中可能接近 2 秒,但题目给定了 2 秒,所以可能可以接受。 我们可以优化除法,但应该没问题。 现在,测试样本:N=7,A=28%P=28,T(N)=16,S=12,正确。 N=3,A=6,T(N)=5(如前所述:b=1:3,b=2:1,b=3:1,总=5),S=6-5=1,正确。 另一个测试:N=1,但 N>=3,所以不需要。 N=4。 手动计算:b 从 2 到 4。 b=2,c=1,a=k*2+1≤4,k≥1:k=1,a=3;k=2,a=5>4,所以只有 a=3,三元组 (3,2,1) b=3,c=1,2 c=1:a=k*3+1≤4,k≥1:k=1,a=4;所以 (4,3,1) c=2:a=k*3+2≤4,k≥1:k=1,a=5>4,无 b=4,c=1,2,3 c=1:a=k*4+1≤4,k≥1:a=5>4,无 c=2:a=6>4,无 c=3:a=7>4,无 所以有两个三元组:(3,2,1) (4,3,1) 现在公式:A=4*5//2=10 T(N)=sum_{b=1}^4 floor(4/b)=b=1:4,b=2:2,b=3:1,b=4:1,总=8 S=10-8=2,正确。 在循环中:k=1,q=4//1=4,i_max=4//4=1,len=1,项=4 k=2,q=4//2=2,i_max=4//2=2,len=1,项=2 k=3,q=4//3=1,i_max=4//1=4,len=4-3+1=2,项=1*2=2?但 k 从 3 到 4?i_max=4,所以 len=2,项=1*2=2,总=4+2+2=8,正确。 三元组:我们有两个,但 (4,3,1):4 mod 3=1,正确。 现在,在问题中,a,b,c 必须互不相同,我们有 (3,2,1) (4,3,1),都满足。 有没有更多?例如,(1,2,1),但 a=c=1,不允许,且 a mod b=1 mod 2=1=c,但 a=c。 或者 (2,2,0),但 c=0 不允许,且不互不相同。 所以是的。 现在,在代码中,应该没问题。 但在累加时,我们计算了 T(N) mod P,但在 S = A - T(N) mod P 中,由于 A T(N) 是整数,但我们在模运算下计算,应该没问题。 在减法中,我们做了 S = (A - total_T) % P,如果为负加 P。 现在,对于大 N,应该没问题。 现在,输出答案。 但在问题中,样本输入 7 输出 12,我们得到了。 另一个样本输入?问题中只有一个样本,但我们可以测试 N=7。 在问题陈述中,有样本输入 1:7,输出 12。 是的。 所以,我认为这是正确的。 现在,关于相关问题。 在最后,我需要提出 3-5 个相关问题。 问题:计算满足条件的整数元组 (a,b,c) 的数量:1≤a,b,c≤N,互不相同,且 a mod b = c。 我们找到了 S = \frac{N(N+1)}{2} - \sum_{k=1}^N \lfloor N/k \rfloor 相关问题: 1. 如果条件改为 b mod a = c,该如何解决? 2. 如果移除互不相同的条件,该如何解决? 3. 如果 a,b,c 不需要互不相同,但 c 必须满足 0≤c<b,该如何解决? 4. 如果要最小化或最大化 a,b,c 中的某个值,而不是计数,该如何解决? 5. 对于更大的约束,比如 N=10^15,如何进一步优化? 或者更贴合题目的。 由于题目涉及模运算计数。 1. 如果要 a,b,c 是互不相同的质数,而不仅仅是整数,该如何解决? 2. 如果条件改为 a div b = c(整数除法),该如何解决? 3. 如果考虑多个条件或不同的模运算条件,该如何解决? 4. 在二维平面上的推广,其中点在网格上,等等。 现在,我需要输出。 所以,在回答的最后。</think>### 问题解答 要解决计算满足以下条件的整数元组 \((a, b, c)\) 的数量(模 \(998244353\))的问题: - \(1 \leq a, b, c \leq N\) - \(a, b, c\) 成对互不相同 - \(a \mod b = c\) 其中 \(N\) 是一个整数且 \(3 \leq N \leq 10^{12}\)。由于 \(N\) 很大,不能使用暴力枚举,需要推导数学公式并高效计算。 #### 关键推导 1. **条件分析**: - \(a \mod b = c\) 意味着 \(a = k \cdot b + c\) 对于某个整数 \(k \geq 0\),且 \(0 \leq c < b\)。但题目要 \(c \geq 1\)(因为 \(1 \leq c \leq N\)),所以 \(b \geq 2\)(若 \(b = 1\),数只能是 \(0\),矛盾)。 - \(a, b, c\) 互不相同:由于 \(c < b\),有 \(b \neq c\);若 \(k = 0\),则 \(a = c\),违反互异性,因此必须 \(k \geq 1\)(即 \(a \geq b + c > b\),确保 \(a \neq b\) \(a \neq c\))。 2. **固定 \(b\) 计算**: - 对于每个 \(b\)(\(2 \leq b \leq N\)),\(c\) 的范围是 \(1 \leq c \leq b - 1\)。 - \(a = k \cdot b + c\) 且 \(k \geq 1\),\(a \leq N\),即 \(k \leq \lfloor (N - c) / b \rfloor\)。 - 对于固定 \(b\),满足条件的 \((a, c)\) 对数为: \[ f(b) = \sum_{c=1}^{b-1} \left\lfloor \frac{N - c}{b} \right\rfloor \] - 简化 \(f(b)\):令 \(q = \lfloor N / b \rfloor\),\(r = N \mod b\)(即 \(N = q \cdot b + r\),\(0 \leq r < b\)),则: \[ f(b) = \begin{cases} q & \text{if } c \leq r \\ q - 1 & \text{if } c > r \end{cases} \] - \(c \leq r\) 的 \(c\) 有 \(r\) 个,\(c > r\) 的 \(c\) 有 \((b - 1) - r\) 个,所以: \[ f(b) = r \cdot q + ((b - 1) - r) \cdot (q - 1) = N - b + 1 - \left\lfloor \frac{N}{b} \right\rfloor \] 3. **总公式**: - 总元组数为: \[ S = \sum_{b=2}^{N} f(b) = \sum_{b=2}^{N} \left( N - b + 1 - \left\lfloor \frac{N}{b} \right\rfloor \right) \] - 拆分计算: \[ \sum_{b=2}^{N} (N - b + 1) = \sum_{k=1}^{N-1} k = \frac{(N-1)N}{2} \] \[ \sum_{b=2}^{N} \left\lfloor \frac{N}{b} \right\rfloor = \left( \sum_{b=1}^{N} \left\lfloor \frac{N}{b} \right\rfloor \right) - \left\lfloor \frac{N}{1} \right\rfloor = T(N) - N \] 其中 \(T(N) = \sum_{b=1}^{N} \lfloor N / b \rfloor\) 是约数函数。 - 因此: \[ S = \frac{(N-1)N}{2} - (T(N) - N) = \frac{N(N+1)}{2} - T(N) \] 4. **高效计算**: - 计算 \(A = \frac{N(N+1)}{2} \mod 998244353\)。 - 计算 \(T(N) = \sum_{b=1}^{N} \lfloor N / b \rfloor\) 使用 \(O(\sqrt{N})\) 算法: - 初始化 \(k = 1\),总 \(total_T = 0\)。 - 当 \(k \leq N\): - \(q = \lfloor N / k \rfloor\) - \(i_{\text{max}} = \lfloor N / q \rfloor\)(满足 \(\lfloor N / i \rfloor = q\) 的最大 \(i\)) - 区间长度 \(len = i_{\text{max}} - k + 1\) - 贡献项 \(term = q \times len\) - 更新 \(total_T = (total_T + term) \mod 998244353\) - 更新 \(k = i_{\text{max}} + 1\) - 最终 \(S = (A - total_T) \mod 998244353\)(若为负,加 \(998244353\))。 #### 复杂度 - 计算 \(T(N)\) 的循环迭代次数为 \(O(\sqrt{N})\),对于 \(N \leq 10^{12}\)(约 \(2 \times 10^6\) 次迭代),在 2 秒内可完成。 - 空间复杂度 \(O(1)\). #### 示例验证 - **输入 \(N = 7\)**: - \(A = 7 \times 8 / 2 = 28\) - \(T(7) = \lfloor 7/1 \rfloor + \lfloor 7/2 \rfloor + \lfloor 7/3 \rfloor + \lfloor 7/4 \rfloor + \lfloor 7/5 \rfloor + \lfloor 7/6 \rfloor + \lfloor 7/7 \rfloor = 7 + 3 + 2 + 1 + 1 + 1 + 1 = 16\) - \(S = 28 - 16 = 12\),输出 12,正确。 - **输入 \(N = 3\)**: - \(A = 3 \times 4 / 2 = 6\) - \(T(3) = 3 + 1 + 1 = 5\) - \(S = 6 - 5 = 1\),正确(元组:\((3,2,1)\))。 #### 代码实现(Python) ```python MOD = 998244353 def main(): import sys N = int(sys.stdin.readline()) # 计算 A = N(N+1)/2 mod MOD A = (N * (N + 1)) // 2 % MOD # 计算 T(N) mod MOD total_T = 0 k = 1 while k <= N: q = N // k if q == 0: break i_max = N // q len_seg = i_max - k + 1 term = q * len_seg total_T = (total_T + term) % MOD k = i_max + 1 S = (A - total_T) % MOD if S < 0: S += MOD print(S) if __name__ == '__main__': main() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值