数学建模常用算法—弗洛伊德算法求最短路径(Floyd)

本文深入讲解Floyd算法,一种用于解决任意两点间最短路径问题的高效算法,适用于无向图或有向图,包括负权重边的情况。文章详细阐述了算法的优缺点、原理及MATLAB实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解决问题

Floyd算法又称为插点法,是解决任意两点间的最短路径的一种算法,可以正确处理无向图或有向图**(可以有负权重,但不可存在负权回路)**的最短路径问题。

优点

能够一次性的求出任意两点之间的最短路径。

缺点

时间复杂度比较高,不适合大量数据。

算法原理

这个链接里有迪杰斯特算法(Dijkstra)和弗洛伊德算法(Floyd)的动画演示,后五分钟是弗洛伊德(Floyd)的动画演示,能够帮助读者直观地了解算法原理。

https://www.bilibili.com/video/av54668527

该算法最后会得到两个矩阵在这里插入图片描述
矩阵D代表了最短距离矩阵,DijD\mathop{{}}\nolimits_{{ij}}Dij代表了第 i 个点到第 j 个点的最短路径长度。
矩阵S代表最短路径矩阵,SijS\mathop{{}}\nolimits_{{ij}}Sij代表了第 i 个点到第 j 个点的最短路径中从 i 出发的下一个点。以从点2到点4为例,
S24S\mathop{{}}\nolimits_{{24}}S24=1,即点2需先经过点1;
S14S\mathop{{}}\nolimits_{{14}}S14=3,即点1需再经过点3;
S34S\mathop{{}}\nolimits_{{34}}S34=0,即点3需再经过点0;
S04S\mathop{{}}\nolimits_{{04}}S04=4,即点0可直接到达点4。
所以点2到点4的最短路径为:2→1→3→0→4。

注意事项

前面提到,弗洛伊德算法不能处理含有负权回路的图。
在这里插入图片描述

MATLAB算法实现

D =     %输入权重邻接矩阵,
n = size(D,1);  % 计算节点的个数

% 初始化dist矩阵
dist = D;

% 下面我们来初始化path矩阵
path = zeros(n);
for j = 1:n
    path(:,j) = j;   % 将第i列的元素变为j
end
for i = 1:n
    path(i,i) = -1;  % 将主对角线元素变为-1
end

% 下面开始三个循环
for k=1:n    % 中间节点k从1- n 循环
   for i=1:n     % 起始节点i从1- n 循环
      for j=1:n    % 终点节点j从1-n 循环
          if dist(i,j)>dist(i,k)+dist(k,j)  % 如果i,j两个节点间的最短距离大于i和k的最短距离+k和j的最短距离
             dist(i,j)=dist(i,k)+dist(k,j);  % 那么我们就令这两个较短的距离之和取代i,j两点之间的最短距离
             path(i,j)=path(i,k);   % 起点为i,终点为j的两个节点之间的最短路径要经过的节点更新为path(i,k)
             % 注意,上面一行语句不能写成path(i,j) = k; 这是网上很多地方都容易犯的错误,在PPT11页中会告诉大家为什么不能这么写
          end
      end
   end
end

end

D为权重邻接矩阵,其中权值的路径权重为无穷大。比如在这里插入图片描述
的权重邻阶矩阵为
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值