21、无标注医学图像的全局和局部表示的三元组对比学习

无标注医学图像的全局和局部表示的三元组对比学习

1. 引言

自监督学习(SSL)在表示学习中展现出巨大潜力,并已应用于各种计算机视觉任务。随着其在自然图像领域取得性能提升,医学图像分析领域也开始积极开展相关研究。不过,当前大多数对比学习方法在医学图像分析中应用并不广泛,因为医学图像与自然图像存在差异,例如医学图像中的异常病变不固定且尺寸小,普通实例级自监督结构难以对这些区域变化进行建模。

本文提出一种基于三元组比较网络的自监督学习方法,通过引入代表身体结构的全局变化和关注纹理的局部变化,更有效地学习医学图像中的异常特征。该方法将全局结构视为正样本,局部纹理视为负样本,利用三元组损失使全局结构与原始图像更接近,局部细节与原始图像更远,从而实现整体和局部的同时学习,促进多层次特征表示。与其他方法相比,该模型不需要大批次数据、大队列存储负样本或网络不对称性,仅需少量数据就能达到甚至超越现有最先进模型。

2. 相关工作
  • 计算机视觉中的自监督学习 :近年来,自然静态图像的自监督学习取得了不错的成果。例如基于上下文的拼图模型,将图片分成9个无序小块,以恢复正确顺序作为代理任务;基于对比的MoCoV2设计了队列存储负样本,将同一图像的不同增强数据作为正样本,队列中的数据作为负样本,使用对比损失函数使正样本更相似,负样本更不同;PixPro通过单张图像的不同视图构建像素级对应关系,但忽略了全局特征。
  • 医学图像中的自监督学习 :近年来,自监督学习也常应用于医学数据,以缓解医学数据集小和标注困难的问题。部分工作设计了特殊的代理任务,部分基于正负样本对进行对比学习。
本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师研发人员的同学们。基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型算法层出不穷。如何快速入门并达到可以从事研发的高度对新手中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师研发人员。本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理实践相结合,逐篇深入解读经典前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。本课程提供课程资料的课件PPT(pdf格式)项目实践代码,方便学员学习复习。本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值