多模态生物识别系统与离线签名验证技术解析
多模态生物识别系统中的排名级融合方法
多模态生物识别系统的设计极具挑战性,这是因为生物识别源在信息类型、信息内容量级、不同源之间的相关性以及实际应用的性能要求等方面存在异质性。不过,相较于单模态系统,多模态生物识别系统在提升系统性能方面具有显著优势,因此其应用愈发重要。信息融合是单模态和多模态生物识别系统设计的关键差异之一,而排名级融合作为一种研究较少的融合策略,值得深入探讨。
贝叶斯方法
贝叶斯方法用于生物识别排名融合,它基于贝叶斯决策理论。该方法利用排名分布(即单个匹配器为某个身份分配的排名是真实身份的概率),当已知边际真实匹配分数密度和冒名匹配分数密度时,可以对其进行估计。此估计需要两个假设:
1. 单个用户的匹配分数相互独立。
2. 不同用户的匹配分数分布相同。
共识排名是各个匹配器后验概率的乘积。如果有 (m) 个分类器,特定类别的共识排名 (R_c) 可通过以下公式计算:
[R_c = \prod_{i=1}^{m} P_i(R_i)]
其中 (P_i(R_i)) 是第 (i) 个分类器为身份(类别)分配排名 (R_i) 时,该身份为真实身份的后验概率。最终的身份认证排名是将每个类别的共识排名按降序排序得到的。
马尔可夫链方法
马尔可夫链是一种新颖的多模态生物识别系统的生物识别排名融合方法。马尔可夫链是一个随机过程或状态集合,其中某个未来状态发生的概率仅取决于系统的当前或紧前状态,而与导致当前状态的事件无关。在马尔可夫链生物识别排名聚合方法中,假设在已注册身份上存在一个马尔可夫链,并且从不同生物识别匹配器获得的排名列表中这些身份之间的顺