基于傅里叶变换的数字识别与签名验证
1. 知识基础与特征表示
在签名验证系统中,知识基础的构建是关键的一步。对于待分类签名的第 k 个笔画,我们关注其极小值数量 (m’ k) 和极大值数量 (M’_k) 。同时,对于标准签名类(SLC)中第 s 个签名的第 k 个笔画,有极小值数量 (m {sk}) 和极大值数量 (M_{sk}) 。SLC 的每个条目由该类所有签名各笔画的极小值和极大值数量的平均值来表示。
例如,假设有一个签名由 3 个笔画组成,对于每个笔画,我们分别统计其极小值和极大值的数量。然后,对于 SLC 中的多个签名,计算每个笔画的极小值和极大值的平均数量,以此作为该 SLC 的特征表示。
2. 傅里叶描述符作为单笔画的判别特征
为了获取给定类中签名的全局特征,我们引入了笔画的傅里叶描述。具体步骤如下:
- 对于一个 n 笔画输入签名的第 s 个笔画,其由 (N_s) 个点组成的序列 (z_{s_i} = x_{s_i} + y_{s_i}) ((i = 0, \cdots, N_s - 1) )。
- 首先,将序列长度标准化为 (N’) 个点((N’ = 2\alpha) ,(\alpha) 为整数)。
- 然后,对 (z_{s_i}) 应用快速傅里叶变换(FFT)算法,得到傅里叶系数 (c_{s_i}) ((i = 0, \cdots, N’) ,(s = 1, \cdots, n) )。
- 最后,计算傅里叶描述符 (d_{s_{1 - i}} = c_{s_i} / c_{s_1}) ((i = 2, \cdots, N’) )。
许多实验表明,每个笔画的