带障碍物的平面上的斯坦纳树问题
1. 问题背景
在多智能体系统和互联系统中,最小长度斯坦纳树对于实现高效的协调至关重要。这类问题在许多实际应用场景中都有广泛的应用,例如群集控制、路径规划和网络设计等。具体来说,斯坦纳树问题是指在一个给定的点集上,找到一棵连接这些点的树,使得树的总长度最小。当涉及到带有多边形障碍物的地图时,问题变得更加复杂,因为树的路径必须避开这些障碍物,同时保持最短路径。
在二维欧几里得域中,最小长度斯坦纳树对于实现多智能体和互联系统的高效协调具有特殊意义。本章特别关注带有多边形障碍物的地图上最小斯坦纳树的计算问题。
2. 方法介绍
2.1 层次优化与无梯度随机优化
为了解决带障碍物的斯坦纳树问题,我们结合了两种优化方法:层次优化和无梯度随机优化。层次优化通过对二维凸域中受限最短路径进行序列二次规划(SQP)来实现。无梯度随机优化算法则适用于具有凸搜索空间的问题。这两种方法的结合使得我们能够高效地处理复杂地形中的路径规划问题。
2.2 启发式算法
我们还介绍了几种无梯度和自然启发式算法,包括但不限于:
- 基于排名的差分进化(RBDE) :通过排名机制选择优秀的个体,以加速收敛。
- 具有成功父代选择的差分进化(DESPS) :通过选择成功的父代个体来提高解的质量。
- 划分矩形优化算法(DIRECT) :通过递归地将搜索空间划分为矩形区域,逐步逼近最优解。