25、旅行商问题启发式变体解决方案

旅行商问题启发式变体解决方案

在许多实际问题中,找到最优解往往是一项极具挑战性的任务,尤其是像旅行商问题(TSP)这类复杂的组合优化问题。本文将深入探讨启发式方法在解决TSP问题中的应用,结合体育钓鱼线路规划的案例,详细介绍相关算法的原理、实现及效率分析。

启发式方法概述

启发式是定义在搜索树节点上的数学函数h(f),搜索树是一种能实现高效搜索的数据结构,h(f)用于估算给定节点到目标节点的最经济路径成本。启发式方法常用于局部搜索算法,如利己搜索。利己搜索会选择启发式函数值最低的节点,搜索树会扩展g(f) + h(f)值最低的节点,其中g(f)是从初始状态到当前节点的精确路径成本。当h(f)是可采纳的,即h(f)从不高估找到目标的成本时,搜索树可能是最优的。

使用启发式方法的原因主要有以下几点:
- 问题本身性质决定,尚无已知的精确求解方法。
- 虽有精确方法,但计算成本过高。
- 启发式方法比精确方法更灵活,能纳入复杂的建模条件。
- 作为全局过程的一部分,保证找到问题的最优解。

启发式方法虽不能保证得到最优解,但通常能找到接近最优结果的近似解。

TSP的启发式算法分类

为了用启发式方法阐述TSP问题,可将启发式算法分为以下几类:
- 构造启发式
- 最近邻算法(NN) :类似贪心算法,旅行商每次选择最近的未访问城市作为下一个目的地。该算法能快速给出较短路线,但对于平面上随机分布的N个城市,平均返回的路径比最短可能路径长25%,且在某些城市分布情况下,可能返回最差路径。对于满足三角

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值