2、深度神经网络可扩展和模块化鲁棒性分析

深度神经网络可扩展和模块化鲁棒性分析

1. 块总结的扩展

在深度神经网络分析中,为了获得更紧密的具体边界,我们通常会进行反向替换来构建定义在早期层神经元上的符号约束。以DeepPoly方法为例,每个仿射层都会逐层进行反向替换,直到输入层。

假设一个网络有 $n$ 个仿射层,每层最多有 $N$ 个神经元,考虑第 $k$ 个仿射层(输入层索引为 0)。第 $k$ 个仿射层通过前一个仿射层进行反向替换的每一步需要 $O(N^3)$ 的时间复杂度,通过前一个 ReLU 层进行反向替换需要 $O(N^2)$ 的时间复杂度,因此第 $k$ 个仿射层完成反向替换过程需要 $O(k·N^3)$ 的时间。总体而言,DeepPoly 分析需要 $O(n^2 · N^3)$ 的时间复杂度。这在处理大型网络时会给 DeepPoly 带来很大的负担,例如在评估平台上,DeepPoly 分析 ResNet18(18 层)上的一张图像大约需要 40 小时。

为了解决这个问题,我们提出将神经网络划分为块,并为每个块计算总结。这种总结使我们能够通过跨块加速反向替换操作,就像在某些等式中,神经元的约束可以直接定义在输入神经元上。

2. 网络块总结
2.1 模块化网络分析

为了提高可扩展性,我们提出了一种模块化方法,通过将网络分割成块并按顺序分析每个块,来降低计算成本和内存使用。具体来说,我们提出了以下两种技术来减少计算步骤:
1. 为每个块生成输入和输出神经元之间的总结,并利用块总结在反向替换过程中进行“跳跃”,而不是逐层进行。
2. 通过限制反向替换操作提前终止,利用块总结。

网络分割时,我们使用参数 $\

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值