anchor-based和anchor free

本文深入解析了目标检测中的两大主流算法类别:anchor-based,如R-CNN和YOLO,通过预设框寻找最优匹配;与之相对的是anchor-free方法,如CornerNet的多关键点联合表达和FCOS的中心点预测。讲解了各自的工作原理和代表性模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在目标检测中,常用的算法有R-CNN系列、YOLO系列、ssd、CenterNet、RetinaNet、CornerNet等,这些算法按照anchor可以分为两类:anchor-basedanchor free

anchor-based是提前设定了一些尺寸不同的框,在训练过程中,根据这些框和GT计算损失使其不断接近GT。

anchor free 类:

(1)基于多关键点联合表达的方法,比如CornerNet:左上角点+右上角点

(2)基于单中心点预测的方法,比如FCOS:中心点+到框的2个距离

 

### Anchor-basedAnchor-free目标检测方法的原理区别及实现机制 #### 1. **Anchor-based 方法** Anchor-based 是传统的目标检测框架的核心部分之一,它通过预先定义一组锚框(anchors),这些锚框覆盖图像的不同位置、尺度宽高比例。具体来说: - 锚框是基于网格划分的方式生成的一组候选框,通常会设置多种尺寸宽高比以适应不同大小的对象。 - 对于每个锚框,模型需要预测该框是否包含对象以及如何调整边界框的位置形状以便更好地匹配真实对象。 - 这种方法依赖于大量的手工设计参数,比如锚框的数量、尺度宽高比等。 这种方法的优点在于能够很好地处理多尺度多样化的物体形态[^1]。然而,它的缺点也很明显:由于引入了大量的超参数配置,增加了调参难度,并且计算量较大,尤其是在密集采样情况下。 #### 2. **Anchor-free 方法** 相比之下,Anchor-free 方法摒弃了传统的锚框概念,转而采用更加灵活的设计思路来定位目标。以下是两种主流类型的描述: - **KeyPoint-based 方法** 此类方法首先识别出一些特定的关键点作为参考依据,再由这些关键点推导出整个包围盒的信息。例如 CornerNet 使用两个角点(左上角右下角)表示矩形区域;ExtremeNet 利用极端点(最顶端、底端、左侧、右侧)加上中心点共同界定目标范围[^3]。 - **Center-based 方法** 另一类则是围绕着目标中心展开分析的技术路线——即把注意力集中在目标所在位置附近的像素或者特征图单元格之上。一旦确认某个地方属于某物的心脏地带,则只需额外估计四条边距即可重建完整的边界框数据结构。像 CenterNet 就采用了这种方式,在热力图中寻找峰值对应潜在实例并完成后续操作[^4]。 总体而言,Anchor-free 方案简化了许多复杂度高的环节,降低了人为干预程度的同时提升了系统的鲁棒性效率表现[^5]。 ```python import torch.nn as nn class SimpleAnchorFreeDetector(nn.Module): def __init__(self, num_classes=80): super(SimpleAnchorFreeDetector, self).__init__() # 假设输入为C×H×W形式的feature map self.class_head = nn.Conv2d(256, num_classes, kernel_size=1) # 预测类别得分 self.reg_head = nn.Conv2d(256, 4, kernel_size=1) # 回归偏移向量 def forward(self, x): cls_pred = self.class_head(x).sigmoid() # 类别概率分布 reg_pred = self.reg_head(x) # 边界框回归值 return cls_pred, reg_pred ``` 以上代码片段展示了一个简单的 anchor-free 检测器架构雏形,其中卷积层分别负责分类任务与坐标修正工作。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值