EmbodiedTech
大模型工程师
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
RoboVQA
我们提出了一种可扩展、自下而上且具有内在多样性的数据收集方案,适用于中长时高级推理任务,其吞吐量比传统的自上而下分步收集方法高2.2倍。通过在3栋办公楼内使用多种实体(机器人、人类、使用抓取工具的人类)执行任意用户请求,我们收集了真实数据。实验表明,在所有实体数据上训练的模型即使仅在机器人场景中评估,性能也优于仅用机器人数据训练的模型。我们探索了收集成本的经济性,发现固定预算下结合低成本人类数据和机器人数据更有利。原创 2025-03-20 17:35:55 · 157 阅读 · 0 评论 -
Transformer精选问答
transformer习题原创 2025-03-18 13:08:42 · 49 阅读 · 0 评论 -
BERT系列模型
¶学习了什么是ELMo.ELMo是2018年3月由华盛顿大学提出的一种预训练语言模型.ELMo在6种NLP测试任务中有很大的提升表现.学习了ELMo的结构.ELMo架构总体上采用了双向双层LSTM的结构.最底层的Embedding模块.中间层的双向双层LSTM模块.最上层的特征融合模块.学习了ELMo的预训练任务.ELMo的本质思想就是根据当前上下文对word embedding进行动态调整的语言模型.ELMo的预训练是一个明显的两阶段过程.原创 2025-03-18 13:07:33 · 260 阅读 · 0 评论 -
迁移学习入门
对文档的概括总结代码实现# 5.实现文本摘要任务# 基于pipeline函数返回需要的模型# 直接使用model来预测# 3 准备文本 送给模型。原创 2025-03-18 13:04:31 · 192 阅读 · 0 评论 -
Transformer
模型被提出时间模型优势。原创 2025-03-18 11:43:09 · 41 阅读 · 0 评论 -
RNN及其变体
任务目的目的: 给定一个人名,来判定这个人名属于哪个国家典型的文本分类任务: 18分类---多分类任务数据格式注意:两列数据,第一列是人名,第二列是国家类别,中间用制表符号"\t"隔开通俗理解注意力机制原理与本质:Q(query)、K(key)、V(value)- 第一步【查询】:打开京东网站,我们输入查询(query,Q),比如“笔记本”原创 2025-03-18 11:36:42 · 133 阅读 · 0 评论 -
文本预处理
【文本预处理及作用】文本预处理的主要环节。原创 2025-03-18 11:31:46 · 32 阅读 · 0 评论 -
自然语言处理入门
【什么是人工智能,分别对应哪几个领域】AI是模仿甚至超越人的某项机能,NLP、CV、ASRNLP是机器理解并生成人类语言。原创 2025-03-18 11:27:22 · 188 阅读 · 0 评论 -
评估大语言模型挑战和方法-AAAI2025
目标:理解并改进基础模型,以实现更好的人类与人工智能协作。原创 2025-03-17 15:59:31 · 258 阅读 · 0 评论 -
Pytorch的入门
torch.cuda.is_available() 判断服务器, 电脑是否支持cuda (GPU)4: 阿达母积 & 点积 (矩阵乘法)1: 安装pip 包, 指定阿里云的镜像。2: 计算机中的随机数都是伪随机数。原创 2025-03-13 15:56:03 · 161 阅读 · 0 评论