DS-1000:数据科学代码生成的可靠基准测试

王者杯·14天创作挑战营·第5期 10w+人浏览 771人参与

本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!

DS-1000 是由香港大学、北京大学等高校的研究人员联合推出的一个专注于 数据科学代码生成 的基准测试数据集。它包含了 1000 个数据科学相关问题,旨在评估大型语言模型(LLM)在数据科学领域生成代码的准确性和可靠性。

概述与背景

DS-1000 的创建源于对现有代码生成基准测试局限性的思考。虽然此前存在一些代码生成的评估基准,但它们往往缺乏对数据科学领域的专注,或者存在数据污染(测试数据可能已在模型的训练集中)的风险。DS-1000 试图解决这些问题。

该数据集的问题来源自 Stack Overflow 平台上真实存在的编程问题,涵盖了数据科学工作中最常用的 7个Python库:NumPy、SciPy、Pandas、TensorFlow、PyTorch、Scikit-learn 和 Matplotlib。

为了构建这个数据集,五位研究者花费了大约 1200个专家小时 进行数据的整理、重写和验证工作,确保了数据的高质量和可靠性。

本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!

往期文章推荐:

主要特点与设计原则

DS-1000 的设计包含几个核心特点和设计原则,使其成为一个强大且可靠的基准:

  • 真实性与实用性:所有问题都源自真实的编程社区(Stack Overflow),反映了数据科学家在实际工作中可能遇到的真实任务和挑战。
  • 多样性:问题覆盖了7个核心数据科学库,每个库的问题数量分布相对均衡,提供了广泛的评估范围。
  • 防止数据污染:为了避免模型在训练阶段已经见过测试数据而导致评估失真,DS-1000 对原始问题进行了两种类型的扰动:
    • 表面扰动(Surface Perturbations):例如修改变量名、函数名或注释,共152个问题。
    • 语义扰动(Semantic Perturbations):改变问题的语义或要求,使其与原始问题在本质上有所不同但难度相当,共235个问题。
    • 困难重写(Difficult Rewrites):对162个问题进行了难度更高的重写,以增加挑战性。
  • 个性化的评估指标:为每个问题都设计了相应的测试用例和评估函数,确保能够准确、自动地评估生成代码的正确性。

数据集结构

DS-1000 数据集按库进行分类组织,结构清晰。以 NumPy 为例,其目录结构如下:

ds1000_data
├── Numpy
    ├── Completion
    └── Insertion
        ├── q0
            ├── .cfg                # 问题的元数据信息
            ├── ans                 # 输入和解决对象的pickles文件
            ├── input               # 输入和解决对象的pickles文件
            ├── prompt.txt          # 官方推荐的用于查询大模型答案的prompt
            ├── code_context.txt    # 用于评估的可执行代码context
            ├── reference_code.txt  # 参考代码(ground truth solution code)
            ├── test_code.py        # 测试代码
            └── test_generate_pickle.py # 用于生成input里面pickles文件的脚本
├── Pandas
├── Pytorch
├── Scipy
├── Sklearn
├── Tensorflow
└── Matplotlib

DS-1000 支持两种代码生成提示格式:

  1. Completion(补全):给定一些代码上下文,要求模型补全缺失的代码片段。
  2. Insertion(插入):在代码的特定位置(标记为 [insert])插入合适的代码。

评估方法与使用

使用 DS-1000 评估一个代码生成模型通常遵循以下步骤:

  1. 加载数据集:从指定的源(如 GitHub)获取 DS-1000 数据集。
  2. 生成代码:对于每个问题,将 prompt.txt 的内容作为输入提示,提交给待评估的大型语言模型,获取模型生成的代码。
  3. 执行测试:将模型生成的代码与 test_code.py 中提供的测试用例结合起来运行,检查是否通过测试。
  4. 计算通过率:统计在所有问题上通过测试的比例,作为模型在 DS-1000 上的性能指标。

DS-1000 提供了一个标准化的评估框架,使得不同模型之间的比较更加公平和可靠。

主要研究成果与影响

通过对多个先进代码生成模型(如 Codex、CodeGen 等)在 DS-1000 上的评估,研究者们获得了一些有价值的发现:

  • 模型在不同数据科学库上的表现存在显著差异。例如,有些模型可能在 Pandas 相关任务上表现良好,但在 TensorFlow 或 PyTorch 上则相对较弱。
  • 模型规模并不总是与性能提升成正比。在某些复杂的、需要深入理解数据科学概念的任务上,单纯的模型缩放可能收益有限。
  • 验证了高质量、针对性的训练数据对于模型在特定领域(如数据科学)性能提升的重要性。

这些发现为未来代码生成模型的研究和开发提供了重要指导,强调了领域适应性和数据质量的重要性。

DS-1000 自发布以来,已成为评估代码生成模型,特别是在数据科学领域能力的重要基准之一,受到了学术界和工业界的广泛关注和使用。许多最新的代码大模型(如 DeepSeek-Coder)在论文中都报告了其在 DS-1000 上的性能表现。

重要性与未来方向

DS-1000 为代码生成领域,特别是数据科学这一重要子领域,提供了一个自然、可靠且具有挑战性的评估基准。它的出现极大地促进了代码生成模型在数据科学应用中的研究和进步。

未来,像 DS-1000 这样的基准测试可能会朝着以下方向发展:

  • 覆盖更多库和领域:超越当前的7个库,涵盖更广泛的数据科学和机器学习工具链。
  • 评估更复杂的任务:不仅评估单行代码或简单函数的生成,还能评估更复杂的管道构建、调试和优化任务。
  • 多语言支持:虽然 Python 是数据科学的主流语言,但未来可能会扩展到 R、Julia 等其他语言。
  • 注重代码质量和效率:除了正确性之外,还会评估生成代码的可读性、可维护性和运行效率。

结论

DS-1000 代表了代码生成评估领域的一项重要进展,它通过提供一個高质量、防污染、贴近实际的基准测试,专门针对数据科学这一关键领域。它不仅帮助研究人员和开发者客观地衡量和比较不同模型在数据科学代码生成方面的能力,也揭示了当前模型的局限性和未来的改进方向。

随着 AI 辅助编程工具在数据科学工作中的日益普及,像 DS-1000 这样的基准测试将继续发挥着至关重要的作用,推动着代码生成技术向着更加可靠、高效和实用的方向发展。🚀

💻 开源地址:DS-1000 已在 GitHub 上开源,开发者可以访问 https://github.com/HKUNLP/DS-1000 或官方页面 https://ds1000-code-gen.github.io/ 获取数据集、代码和更多详细信息。

本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值