文本挖掘(TF-IDF)小案例《每日新闻预测金融市场变化》

数据简介

本案例用到的原始数据是一个简单的数据集,其中包括从国外某网站捞取的每日新闻排序(25条),然后以当日的股票市场涨跌作为Label。从而根据对新闻的挖掘,来判断当日股票涨跌。

数据集大致长这样(部分截图):
Date:日期数据,本案例文本分析就不用这个数据了。
Label:当日股票市场情况,1代表上涨,0代表下跌。
Top*:共25列,表示当日的相关新闻。
在这里插入图片描述
下面利用TF-IDF简单的跑一下文本挖掘的基本流程,代码也都比较简单,重点是关注处理流程。

导入数据:

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
import pandas as pd
import numpy as np
from sklearn.svm import SVC
from sklearn.metrics import roc_auc_score
from datetime import date

#读入数据
data=pd.read_csv(r'E:\python\news stock\input\Combined_News_DJIA.csv')
#观察数据
data.head()

数据预处理:

#接下来我们把headlines先合并起来。因为我们需要考虑所有的news的。
data['combined_news']=data.filter(regex=('Top.*')).apply(lambda x:''.join(str(x.values)),axis=1)

#分割测试/训练集,保留部分数据测试用
train=data[
<think>好的,我需要回答用户关于TF-IDF的定义及其在信息检索和自然语言处理中的应用的问题。首先,我得回忆一下TF-IDF的基本概念。TF-IDF由两部分组成:词频(TF)和逆文档频率(IDF)。词频指的是某个词在文档中出现的频率,而逆文档频率则是衡量该词在整个文档集合中的重要性。两者的乘积就是TF-IDF值,用来评估一个词对文档的重要程度。 接下来,我要确认用户提到的引用内容。根据引用[3],TF-IDF的公式是$ \text{TF-IDF}(t, d, D) = \text{TF}(t, d) \times \text{IDF}(t, D) $。这里t代表词项,d是文档,D是文档集合。需要详细解释TFIDF各自的定义,比如TF通常是词出现的次数除以文档总词数,IDF是文档总数除以包含该词的文档数的对数转换。 然后,关于应用部分,用户提供的引用[1]和引用[2]提到了TF-IDF文本挖掘自然语言处理中的广泛应用,比如关键词提取、信息检索中的文档排序。这里需要具体说明几个应用场景,比如搜索引擎如何利用TF-IDF来匹配查询和文档,或者文本分类中如何用TF-IDF作为特征。 同时,要注意用户提到的“生成相关问题”,所以最后需要准备几个相关问题,比如优化方法、与其他算法的比较、实际应用案例等。确保问题覆盖TF-IDF的不同方面,帮助用户进一步学习。 最后,检查回答是否符合格式要求:使用中文,数学公式用$...$或$$...$$,引用正确标注,结构清晰。可能需要举例说明TFIDF的计算过程,让解释更具体。</think>### TF-IDF的定义及其应用 #### 1. **TF-IDF的定义** TF-IDF(Term Frequency-Inverse Document Frequency)是一种用于评估文本中词语重要性的统计方法。其核心思想是:**一个词在文档中出现的频率高(TF高),但在整个文档集合中出现频率低(IDF高),则该词对当前文档的区分能力越强**。公式如下: $$ \text{TF-IDF}(t, d, D) = \text{TF}(t, d) \times \text{IDF}(t, D) $$ 其中: - **词频(TF)**:表示词$t$在文档$d$中出现的频率。常用计算方式为: $$ \text{TF}(t, d) = \frac{\text{词$t$在文档$d$中的出现次数}}{\text{文档$d$的总词数}} $$ - **逆文档频率(IDF)**:衡量词$t$在整个文档集合$D$中的普遍重要性。公式为: $$ \text{IDF}(t, D) = \log \left( \frac{\text{文档集合$D$的总数}}{\text{包含词$t$的文档数} + 1} \right) $$ 加1是为了避免分母为零的情况[^3]。 #### 2. **TF-IDF的用途** TF-IDF在信息检索和自然语言处理中广泛应用,主要体现在以下场景: 1. **关键词提取** 通过计算文档中各词的TF-IDF值,排序后取最高值的前几个词作为关键词[^2]。 2. **文档相似度计算** 将文档表示为TF-IDF向量后,可通过余弦相似度等方法比较文档间的相似性。 3. **搜索引擎排序** 搜索引擎用TF-IDF对查询词与文档的相关性打分,优化搜索结果排序[^1]。 4. **文本分类与聚类** 在机器学习任务中,TF-IDF常作为特征输入模型,用于分类(如新闻主题识别)或聚类(如用户评论分组)[^1]。 #### 3. **示例说明** 假设文档集合包含1000篇文档,某文档$d$有100个词,其中“算法”出现5次: - **TF**:$5/100 = 0.05$ - **IDF**:若“算法”在100篇文档中出现过,则$\log(1000/(100+1)) \approx 2.004$ - **TF-IDF**:$0.05 \times 2.004 \approx 0.1002$ #### 4. **局限性** - 未考虑词的位置信息(如标题词可能更重要)。 - 无法捕捉词语间的语义关系(如近义词或反义词)。 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值