文本分析 停用词表 停用词过滤

停用词过滤是文本分析的重要预处理步骤,用于去除诸如'的'、'是'等无实际意义的词汇。 pai 提供了几个常用的中文停用词集合,包括一个1208个词的列表和一个json格式的资源链接。

停用词过滤,是文本分析中一个预处理方法。它的功能是过滤分词结果中的噪声(例如:的、是、啊等)

pai提供几个停用词的集合供参考

1. 的,是,了,在,我,这,有,一,人,和,都,你,就,个,也,被,到,要,上,还,为,能,来,给,对

2. [中文停用词(1208个)](https://github.com/JNU-MINT/TextBayesClassifier/blob/master/%E4%B8%AD%E6%96%87%E5%81%9C%E7%94%A8%E8%AF%8D%E8%A1%A8(1208%E4%B8%AA).txt)

3. [中文停用词-json](https://github.com/6/stopwords-json/blob/master/dist/zh.json)


https://my.oschina.net/letiantian/blog/348845

?
、
。
“
”
《
》
!
,
:
;
?
啊
阿
哎
哎呀
哎哟
唉
俺
俺们
按
按照
吧
吧哒
把
罢了
被
本
本着
比
比方
比如
鄙人
彼
彼此
边
别
别的
别说
并
并且
不比
不成
不单
不但
不独
不管
不光
不过
不仅
不拘
不论
不怕
不然
不如
不特
不惟
不问
不只
朝
朝着
趁
趁着
乘
冲
除
除此之外
除非
除了
此
此间
此外
从
从而
打
待
但
但是
当
当着
到
得
的
的话
等
等等
地
第
叮咚
对
对于
多
多少
而
而况
而且
而是
而外
而言
而已
尔后
反过来
反过来说
反之
非但
非徒
否则
嘎
嘎登
该
赶
个
各
各个
各位
各种
各自
给
根据
跟
故
故此
固然
关于
管
归
果然
果真
过
哈
哈哈
呵
和
何
何处
何况
何时
嘿
哼
哼唷
呼哧
乎
哗
还是
还有
换句话说
换言之
或
或是
或者
极了
及
及其
及至
即
即便
即或
即令
即若
即使
几
几时
己
既
既然
既是
继而
加之
假如
假若
假使
鉴于
将
较
较之
叫
接着
结果
借
紧接着
进而
尽
尽管
经
经过
就
就是
就是说
据
具体地说
具体说来
### 如何在文本分析中通过停用词表移除停用词 在自然语言处理(NLP)领域,去除停用词是一项常见的预处理操作。这一步骤有助于减少数据噪声并提高模型性能。以下是如何利用停用词表来实现这一目标的具体方法。 #### 使用停用词表的方法概述 为了有效移除停用词,通常需要准备一份适合当前任务的语言特定停用词表。这些停用词表可以通过已有的公共资源获取,例如中文的哈工大停用词表、百度停用词列表[^1],或者英文资源如 https://www.ranks.nl/stopwords 提供的标准集合[^2]。 一旦获得了合适的停用词表,就可以将其加载到程序中,并应用字符串匹配技术逐字过滤掉不需要的词语。 #### 示例代码展示 下面提供了一个基于 Python 的简单示例,演示如何使用自定义或公开可用的停用词表执行此过程: ```python import jieba # 中文分词库 def remove_stopwords(text, stopwords): """ 移除给定文本中的停用词 参数: text (str): 输入原始文本. stopwords (set): 停用词集合. 返回: str: 不含停用词的新文本串. """ words = jieba.lcut(text) # 对于中文采用结巴分词 filtered_words = [word for word in words if word not in stopwords and word.strip()] return ' '.join(filtered_words) # 加载停用词文件至 set 集合以便快速查找 with open('path_to_your_stopwords_file.txt', encoding='utf-8') as f: custom_stopwords = set(f.read().splitlines()) sample_text = "这是一个测试例子,用于说明如何去掉无意义的常用词比如 和 或者 是" cleaned_text = remove_stopwords(sample_text, custom_stopwords) print(cleaned_text) ``` 上述脚本实现了如下功能: - 利用了 `jieba` 库来进行精确模式下的中文分词; - 定义函数接受一段文字和一组停用词作为参数,返回清理后的结果; - 将本地存储的停用词读入内存成为不可变的数据结构——集合(set),从而加速成员检测速度。 注意,在实际部署前需替换 `'path_to_your_stopwords_file.txt'` 路径指向真实的停用词文档位置。 #### 关键点总结 - **选择恰当的停用词集**:不同应用场景可能要求不同的停用词配置,因此应仔细挑选最贴切的那个版本。 - **高效的数据结构支持**:考虑到大规模语料上的效率问题,推荐运用 hash 表形式(即 Python 内置的 set 类型),它能显著提升检索效能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值