Dify “Agent节点” 让工作流学会 “自主推理”,小白零基础收藏这一篇就够了!!

前言

在以往常见的Dify工作流里面,工具的调用逻辑是预先编排好的,不够灵活,无法适应复杂场景。随着大型语言模型(LLM)推理能力的不断增强,Dify推出Agent节点,利用大模型自主调 用工具。通过集成不同的Agent推理策略,使LLM能在运行时动态选择并执行工具,增强工具调用灵活性。

Agent节点 与 Agent策略

  • Agent节点(执行单元)
    工作流的“决策中心”。它分配资源、管理状态,并记录整个推理过程。
    图片

Agent策略(决策逻辑)

Agent策略,是一个可插拔的推理算法模块(可以具象为提示词),定义了如何使用工具以及如何解决问题,它是嵌入Agent节点来产生作用的。

目前Dify市场上有四种Agent策略插件,见下图:

图片

Agent节点类似LLM节点,它处理特定任务,并将最终响应返回给下一个节点。Agent节点和Agent策略这种解耦设计就像将汽车的发动机与控制系统分开一样——开发人员可以在不影响整体架构的情况下升级“动力系统”。

在工作流中,Agent节点为多步工具推理实现了自主思考。一个最小的 Agent策略至少需要定义如何使用LLM API以及如何调用工具。

Agent Node 功能示意图Agent节点功能示意图

Dify官方Agent策略插件介绍

Dify Agent策略插件

是Dify官方推出的,如下是它的安装方法:

图片

Dify Agent策略插件提供了两种推理策略Function Calling和ReAct,下面进行简单对比:

1. Function Calling
Function Calling将用户命令映射到特定的函数或工具。LLM 识别用户的意图,决定调用哪个函数,并提取所需的参数。这是一种直接调用外部能力的简单机制,它的优点有:

  • 精确:直接调用适合定义任务的正确工具,避免复杂的推理。
  • 易于外部集成:将外部 API 和工具集成到可调用的函数中。
  • 结构化输出:提供结构化的Function Calling信息,便于处理。

2. ReAct(推理 + 行动)
ReAct 在LLM推理和采取行动之间交替进行。LLM分析当前状态和目标,选择并使用一个工具,然后利用工具的输出进行下一步的思考和行动。这个循环会一直重复,直到问题得到解决,它的优点有:

  • 利用外部信息:有效使用外部工具来收集模型单独无法处理的任务所需的信息。
  • 可解释的推理:推理和行动步骤交织在一起,允许一定程度上跟踪Agent 的过程。
  • 广泛适用性:适用于需要外部知识或特定行动的任务,例如问答、信息检索和任务执行。

Dify发布了策略开发的开放标准,

开发人员可以基于此标准进行各种其他策略开发:

(1)使用 CLI 工具快速创建策略插件

(2)自定义配置表单和可视化组件

(3)集成前沿的学术算法,例如:树状思维例如链式思维(CoT)、树状思维(ToT)、图状思维(GoT)、柱状思维(BoT)、语义内核(semantic kernels)等。

Agent节点配置方法简介

  1. 拖放式设置
    只需从工具面板拖动一个 Agent节点,并通过三个步骤进行配置:
    • 选择推理策略
    • 链接工具/模型
    • 设置提示模板
  2. 推理执行日志
    Dify 的强大功能之一是其内置的日志机制,它会创建一个类似树状结构的代理思维过程。这种结构使您能够:
  • 可视化代理的执行路径,以便调试复杂的多步推理
    • 实时查看:
      • 总时间和令牌使用量
      • 每轮推理
      • 工具调用轨迹

图片

Agent策略开发简介

定义 Agent 策略涉及指定语言模型将如何:

  1. 处理用户查询
  2. 选择正确的工具
  3. 使用正确的参数运行这些工具
  4. 处理结果
  5. 决定何时完成任务

开发者指南示意图开发者指南示意图

Dify提供了一个标准化开发工具包,其中包括策略配置组件库(例如模型选择器/工具编辑器)、结构化日志接口以及沙盒测试环境。

具体来说,策略定义涵盖了其身份和元数据、所需参数(模型、工具、查询等)、参数类型和约束以及源代码的位置。

代理的执行分为三个主要阶段:初始化迭代循环最终响应。在初始化阶段,系统设置所有必要的参数、工具和上下文。然后,在迭代循环中,系统根据当前上下文准备提示,并使用有关可用工具的信息调用 LLM。它解析 LLM 的响应,以确定是否需要工具调用,或者是否已经得出最终答案。如果需要工具调用,系统将执行该工具,并将其输出更新到上下文中。此循环会一直持续,直到任务完成或达到预设的迭代限制。最后,在最后一个阶段,系统返回最终答案或结果。

例如,一个 function_calling.yaml 文件可能如下所示:

parameters:
  -name:model
    type:model-selector
    scope:tool-call&llm
-name:tools
    type:array[tools]
-name:max_iterations
    type:number
    default:5
extra:
python:
    source: function_calling.py

采用于这种声明式架构,配置策略变得和填表一样简单,同时支持:

  • 动态参数验证(类型/范围/依赖关系)
  • 自动多语言标签渲染

详见https://docs.dify.ai/zh-hans/plugins/quick-start/develop-plugins/agent-strategy-plugin。

迭代计划

Dify计划进一步对Agent节点进行迭代,添加更多对开发人员友好的组件,例如:

  • 知识库集成
  • Chatflow 中的内存支持
  • 错误处理和重试
  • 更多官方 Agent 策略

未来展望示意图

最后

为什么要学AI大模型

当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!

DeepSeek问世以来,生成式AI和大模型技术爆发式增长,让很多岗位重新成了炙手可热的新星,岗位薪资远超很多后端岗位,在程序员中稳居前列。

在这里插入图片描述

与此同时AI与各行各业深度融合,飞速发展,成为炙手可热的新风口,企业非常需要了解AI、懂AI、会用AI的员工,纷纷开出高薪招聘AI大模型相关岗位。
在这里插入图片描述
最近很多程序员朋友都已经学习或者准备学习 AI 大模型,后台也经常会有小伙伴咨询学习路线和学习资料,我特别拜托北京清华大学学士和美国加州理工学院博士学位的鲁为民老师给大家这里给大家准备了一份涵盖了AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频 全系列的学习资料,这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

AI大模型系统学习路线

在面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。

img

但知道是一回事,做又是另一回事,初学者最常遇到的问题主要是理论知识缺乏、资源和工具的限制、模型理解和调试的复杂性,在这基础上,找到高质量的学习资源,不浪费时间、不走弯路,又是重中之重。

AI大模型入门到实战的视频教程+项目包

看视频学习是一种高效、直观、灵活且富有吸引力的学习方式,可以更直观地展示过程,能有效提升学习兴趣和理解力,是现在获取知识的重要途径

在这里插入图片描述
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

海量AI大模型必读的经典书籍(PDF)

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
在这里插入图片描述

600+AI大模型报告(实时更新)

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

AI大模型面试真题+答案解析

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
在这里插入图片描述

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

<think>好的,我现在需要回答用户关于如何使用Dify框架创建或配置代理(agent)的问题。首先,我得回顾一下用户提供的引用内容,特别是引用[1]提到的DifyAgent功能和内置工具。用户可能希望得到一步步的指导,所以需要结构清晰、分点说明。 首先,我需要明确Dify中创建Agent的基本流程。根据引用[1],Dify允许基于LLM函数调用或ReAct定义Agent,并提供多种内置工具。所以第一步应该是创建Agent应用,然后选择模型,比如GPT-3.5或GPT-4。接下来是配置工具,比如谷歌搜索或Stable Diffusion。这部分需要详细说明如何添加这些工具,是否需要在界面上进行设置。 然后,可能需要配置ReAct策略或函数调用。这里需要解释两者的区别,以及用户如何根据需求选择。比如,ReAct更适合需要推理和动作循环的任务,而函数调用可能更直接。这部分可能需要进一步查阅Dify的文档,但根据现有引用,可以简要说明。 接着是定义提示词模板,这部分需要指导用户如何编写有效的提示词,确保Agent能准确理解任务。比如,可以给出示例模板的结构,说明输入变量和上下文的使用。 测试与部署也是关键步骤,用户需要知道如何通过对话界面测试Agent,并根据结果调整配置。最后,部署到生产环境,比如API或网页应用,可能需要说明部署选项和注意事项。 用户可能还会关心性能优化或高级配置,比如处理复杂任务时的多工具协作。需要提到这些高级功能,但保持回答简洁,引导用户查阅官方文档获取更多细节。 此外,用户提供的引用[2]是关于项目引用的,可能与当前问题无关,但需要确保回答中正确标注引用来源,只使用引用[1]的信息。同时,注意使用中文,避免任何Markdown格式,行内公式用$...$,独立公式用$$...$$,但这个问题可能不涉及数学公式,所以可能不需要使用。 最后,生成相关问题,比如创建Agent的步骤、工具集成方法、ReAct配置、提示词优化等,帮助用户进一步探索。确保问题自然相关,覆盖用户可能感兴趣的方面。</think>### 如何使用Dify创建或配置Agent #### 1. **创建Agent应用** - 在Dify平台中新建一个“Agent”类型的应用,选择基础模型(如GPT-3.5/4)作为核心推理引擎[^1]。 - 通过界面配置Agent的名称、描述和初始参数(如温度值、响应长度限制)。 #### 2. **集成工具(Tools)** - Dify提供50+内置工具(如谷歌搜索、图像生成工具),可直接从工具库中选择并启用。 - 自定义工具:通过API或代码定义工具的功能逻辑,例如: ```python def custom_tool(query: str) -> str: # 实现特定功能(如调用外部API) return processed_result ``` - 工具需声明输入/输出格式,并与Agent的交互流程绑定[^1]。 #### 3. **配置ReAct或函数调用策略** - **ReAct模式**:设置推理-动作循环逻辑,使Agent能动态选择工具并迭代执行任务。例如: > Agent接收到问题 → 分解任务 → 调用工具 → 整合结果 → 最终回复 - **函数调用模式**:直接映射用户意图到预定义工具,适合结构化任务。 #### 4. **定义提示词模板** - 编写提示词以规范Agent的行为,例如: ```text 你是一个数据分析助手,可以调用以下工具: {tools_list} 请根据用户问题分步骤执行操作,并最终用中文回复。 ``` - 支持通过变量(如`{context}`)动态注入上下文信息。 #### 5. **测试与部署** - 在Dify的对话界面模拟用户输入,验证工具调用链路和结果整合逻辑。 - 根据测试结果调整工具配置或提示词优化。 - 部署为API服务或嵌入网页应用,支持流式响应或异步任务处理。 --- ### 高级配置建议 - **多工具协作**:通过条件判断配置工具调用顺序,例如优先使用WolframAlpha计算复杂公式,再调用Stable Diffusion生成图表。 - **异常处理**:设置工具调用超时重试机制或备用响应模板。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值