一、学习目标:精准定位认证核心,构建三维知识体系
(一)知识维度目标:建立RAG技术的「概念-原理-应用」认知三角
-
概念层
- 能准确复述RAG的英文全称(Retrieval-Augmented Generation)及核心技术融合点(信息检索+文本生成)
- 清晰区分「静态知识库」(传统模型)与「动态检索知识库」(RAG)的本质差异,举例说明二者在回答时效性问题时的表现差异(如"2025年最新诺贝尔奖得主")
-
原理层
- 完整复现RAG技术流程图,标注「建立索引」「检索生成」两大模块的关键技术节点(数据分块、向量化、向量检索、提示词生成)
- 解释「嵌入模型」(Embedding Model)的作用,列举3种主流嵌入模型(BERT、GPT-4 Embedding、Sentence-BERT)及其适用场景
-
应用层
- 能举出5个以上RAG技术落地场景,区分「企业级私域应用」(如内部客服机器人)与「公域实时检索」(如新闻问答系统)的不同技术配置
- 识别不同场景下RAG的核心优势,例如医疗场景侧重「减少幻觉」、电商场景侧重「个性化推荐」
(二)能力维度目标:培养技术解析与场景匹配能力
-
技术诊断能力
- 当遇到「模型回答过时」「跨文档知识调用」等问题时,能判断RAG是否为最优解决方案
- 分析具体案例中RAG的优化点,例如某银行客服系统接入内部信贷政策文档后,回答准确率提升40%的技术原理
-
场景适配能力
- 针对给定业务场景(如法律文书生成、教育题库答疑),能规划RAG系统的基础架构(选择向量数据库类型、设定检索K值、设计提示词模板)
(三)备考维度目标:明确认证考核重点
- 高频考点预判
- 掌握「RAG减少幻觉的技术机制」「私域知识库整合的优势」等认证必考概念
- 能准确回答「为什么RAG比传统模型更适合企业级应用」「向量检索的核心算法是什么」等典型考题
二、知识点汇总:从技术细节到场景应用,全维度解析RAG
(一)RAG核心概念:打破传统生成模型的三大枷锁
1.1 重新定义「生成式AI」:RAG的技术本质与价值革新
-
技术融合公式:RAG = 大模型(LLM) + 外部知识库检索引擎
-
核心价值点:
▶ 知识边界突破:传统模型受限于预训练数据截止时间(如GPT-3数据截止2021年9月),RAG通过实时API接入(如Web搜索、企业数据库)获取最新知识(案例:2023年GPT-4通过Bing搜索回答实时问题)
▶ 质量控制升级:传统模型生成依赖「概率最大路径」,易产出逻辑自洽但事实错误的内容(如"爱因斯坦获得过三次诺贝尔奖");RAG强制要求生成内容基于检索到的文档片段,从源头杜绝「无中生有」