⭐️⭐️⭐️白嫖的阿里云认证⭐️⭐️⭐️ 第三弹【课时3:构建一个智能的RAG导购应用】for「大模型Clouder认证:RAG应用构建及优化」

一、学习目标:建立可验证的能力成长坐标系

备考初期我制定了「三维度能力提升模型」,确保每个学习目标都能转化为具体的实操成果:

(一)架构设计能力(战略层)

  • 目标:绘制Multi-Agent协作流程图(含5大核心组件交互)
  • 成果验收:能清晰解释「为什么规划助理必须返回固定列表值」(避免生成不可控输出)
  • 延伸思考:若增加"洗衣机"品类,需修改哪些代码模块?(规划助理输出列表/agent映射表/导购参数列表)

(二)代码实操能力(战术层)

  • 目标:独立完成3次边界测试(正常流程/参数反问/跨品类输入)
  • 实操清单
    1. 输入"我想要拍照效果好的手机"→验证是否优先询问"使用场景"
    2. 输入"RAM空间是什么?"→验证是否先解释再继续提问
    3. 输入"我要买洗衣机"→验证是否返回"其他"分类提示

(三)系统优化能力(落地层)

  • 目标:在冰箱导购中新增"能效等级"参数并调试
  • 实施步骤
    1. 修改FRIDGE_GUIDE_AGENT_INSTRUCTION参数列表(插入新参数)
    2. 更新商品知识库表格(添加"能效等级"列)
    3. 测试对话流程:确认新参数按顺序提问且正确解析

二、知识点精读:从架构到代码的全链路解析

在这里插入图片描述

(一)Multi-Agent架构:智能导购的「神经系统」设计

1. 规划助理(Router Agent):意图分类的「刚性过滤器」
# 规划助理核心指令(决定系统分发逻辑)
ROUTER_AGENT_INSTRUCTION = """你是一个问题分类器
请根结合用户的提问和上下文判断用户是希望了解的商品具体类型。
注意,你的输出结果只能是下面列表中的某一个,不能包含任何其他信息:
- 手机(用户在当前输入中提到要买手机,或正在进行手机参数的收集)
- 电视机(用户在当前输入中提到要买电视机,或正在进行电视参数的收集)
- 冰箱(用户在当前输入中提到要买冰箱,或正在进行冰箱参数的收集)
- 其他(比如用户要买非上述三个产品、用户要买不止一个产品等情况)
输出示例:手机
"""

# 创建规划助理实例(指定模型和角色定位)
router_agent = Assistants.create(
    model="qwen-plus",  # 使用轻量模型提升分类效率
    name='引导员,路由器',
    description='你是一个商城的引导员,负责将用户问题路由到不同的导购员。',
    instructions=ROUTER_AGENT_INSTRUCTION
)

代码设计精髓

  • 输出限制机制:通过明确的列表限定(含具体判断条件),将大模型转化为「确定性分类器」,避免自由生成导致的流程混乱
  • 上下文感知:不仅判断当前输入,还结合历史对话(如"正在进行手机参数收集"),实现跨轮次意图识别
  • 模型选择策略:使用qwen-plus而非qwen-max,在保证分类精度的同时降低计算成本
2. 品类导购助理:参数收集的「状态机引擎」

以手机导购为例,其核心是一个按顺序执行的状态机,代码实现了「参数收集→状态检查→动作决策」的闭环:

# 手机导购参数列表(定义询问顺序和合法选项)
【手机的参数列表】
1.使用场景:【游戏、拍照、看电影】
2.屏幕尺寸:【6.4英寸、6.6英寸、6.8英寸、7.9英寸折叠屏】
3.RAM空间+存储空间:【8GB+128GB、8GB+256GB、12GB+128GB、12GB+256GB】

# 关键逻辑:参数收集完成后的处理
if 所有参数已收集:
    输出参数组合并询问购买意向(如"用于拍照|8GB+128GB|6.6英寸,请问您是否确定购买?"elif 用户询问参数概念:
    先解释(如"RAM空间即运行内存,影响手机多任务处理速度"),再继续询问下一个参数
elif 用户放弃购买:
    输出固定结束语"感谢光临,期待下次为您服务。"

状态机核心特性

  • 顺序严格性:按参数列表顺序提问(确保逻辑连贯),通过对话历史记录已收集参数(避免重复提问)
  • 异常处理链:针对"概念查询""放弃购买"等特殊场景,设计独立处理分支(体现业务专业性)
  • 格式标准化:最终输出固定格式的参数组合(如【使用场景:拍照,屏幕尺寸:6.8英寸…】),为后续商品检索提供结构化输入

(二)智能导购网站搭建:从模板到可运行系统的「魔法转化」

1. 函数计算应用部署:10分钟搭建的背后细节
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值