Delaunay三角网之分治算法

本文介绍了Delaunay三角网的构建方法,重点讲解了分治算法的三个步骤:删除重复点、递归分治和合并子集。分治算法在大量点的情况下仍保持高效,通过使用特殊的数据结构和‘幽灵’三角形辅助合并。文章提供实现代码参考,并附带CMakeLists.txt配置说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

Delaunay三角网现有的构网算法有很多种,有学者曾对其中一些算法进行了调查和评估(如下图所示)。结果表明,在少量点时,Lawson的增量插入算法、Lee和Schachter的分治算法以及Fortune的平面扫描算法在速度上大致相当。但随着点数的增加,分治算法仍然保持着较为不错的计算效率,扫描线算法亦尚可,但增量插入算法已变得很差。因此,分治算法作为非常经典的三角网构网方法,非常值得进行学习一下。

构网流程

1、删除重复点。所有的三角网实现算法都会采用这一步过程,如果不消除重复点,直接进行构网计算,很有可能会导致灾难性的错误,也会使得结果变得不可预知。分治算法采用的是根据点的x坐标对它们进行排序,然后基于此来检测和删除重复的点。

2、递归分治。在剔除重复点之后,递归地将输入的顶点进行减半,直到它们被划分为每两个或三个顶点的子集,这样每个子集都很容易被三角化(产生一条边、两条共线边或一个三角形)。值得一提的是,分治算法有很多已有的数据结构,这里采用的是三角形结构,该结构的分治算法被证明是最快的,这个结构之前也使用过(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大鱼BIGFISH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值