【本文作者:擎创科技资深产品专家 布博士。日常研究大模型。】
大模型(如GPT系列和Meta-Llama系列)在自然语言处理方面表现出色,但要实现最佳效果,仍需通过精细化处理。提示词工程、微调和RAG增强检索是三种关键技术,帮助提升大模型的应用性能。
提示词工程,通过设计精准的输入提示,引导模型生成符合预期的输出。就像教孩子识别苹果一样,单一描述往往不够,需要通过多样化的例子提供上下文,让孩子更好理解。同样,提示词工程通过上下文示例让模型理解并生成更准确的回应。
RAG增强检索,则用于弥补大模型知识局限的问题,将模型与外部知识库连接,使其在生成回答时可以检索到相关信息,确保在未知领域也能提供准确答案。微调则是对模型的定制训练,使其在特定领域的任务中表现更优,类似于演员为特定角色做排练训练。
微调,将大模型比作一位多才多艺的演员,他可以扮演各种角色。但是,要想让演员完美诠释一个特定角色,需要进行针对性的训练和排练。微调的过程类似于演员的排练过程。它利用特定领域的数据对大模型进行进一步训练,使其更擅长处理该领域的任務。例如,将大模型用于医学诊断,就需要使用医疗文本数据进行微调,使其能够理解医学术语并做出准确的诊断。
今天我们重点来介绍一下微调框架的选择:
-
微调的重要性:解锁模型潜能
-
如何选择大模型微调框架
微调的重要性:解锁模型潜能
微调是将预训练模型适应特定下游任务的过程。它类似于一个已经接受过良好教育的学生学习新技能,比如演奏乐器或学习一门外语。
预训练模型就像那个已经接受过良好教育的学生,他们已经掌握了大量的知识和能力,例如理解语言、识别图像等。