超几何概率公式与二项概率公式

本文深入探讨了超几何概率公式与二项概率公式的应用,详细解释了在特定场景下如何使用这些公式来解决实际问题,如在产品检验和随机试验中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

超几何概率公式

设N件产品中恰好有M件次品,其余N-M件产品是非次品,随机的从这N件产品中取a件,则这a件产品中恰好有k个次品的概率是:
\[P(A) = \frac{C_M^kC_{N-M}^{a-k}}{C_N^a}\]

摸球问题可以用超几何概率公式解决。

二项概率公式

如果做一次随机试验只能得到两个不同的结果之一,那么称这种随机试验为伯努利试验。记其中一个结果是成功,另外一个结果是失败。假设成功的概率是p,则失败的概率是1-p。
重复独立地做n次伯努利试验,则其中出现k次成功的概率可以表示为如下公式:

\[P(A) = C_n^kp^k(1-p)^{n-k}\]

放回的摸球公式可以用二项概率公式解决。

转载于:https://www.cnblogs.com/wardensky/p/4918796.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值