
计算机视觉
文章平均质量分 72
欢迎加入我的付费专栏!在这个专栏中,您将深入了解深度学习、图像处理和计算机视觉等领域的最新进展,并获得有关实现的详细指导。无论您是刚刚入门还是有经验的专业人士,我们都将为您提供最全面的课程内容和实用的示例。我们将探讨深度学习的基础知识、最新算法和高级应用,包括图像处理和计算机视觉的多个方面。
onnx
程序员的每日一拱!
平常喜欢分享项目实践经验,知识点,实战项目,欢迎留言,评论,沟通交流,一起进步。
吾等采石之人,当心怀大教堂之愿景。
愿我们奔赴在自己的热爱里!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
一文弄懂--人工智能中的Transformer是什么?
Transformer是一种革命性的神经网络架构,主要用于处理序列数据,如自然语言处理(NLP)任务。它通过自注意力机制同时处理整个序列,显著提高了处理长距离依赖关系的能力。与传统的循环神经网络(RNN)和卷积神经网络(CNN)相比,Transformer具有更高的并行性和效率,使其在机器翻译、文本生成、语音识别等领域表现出色。Transformer的核心组件包括输入嵌入、位置编码、多头自注意力机制和前馈神经网络。其成功推动了大规模语言模型(如GPT和BERT)的发展,并在多模态AI系统中展现出巨大潜力。T原创 2025-05-14 16:48:02 · 899 阅读 · 0 评论 -
【智慧养猪场】-猪的行为分析视频数据集及展示(已做好分类)
通过对这些视频数据的分析,能够应用视频识别技术对猪的日常行为进行监控和分析,进而实现自动化管理养猪场,提高养殖效率和动物福利。在技术应用方面,涉及到视频处理技术、计算机视觉、行为识别算法、人工智能与机器学习、物联网技术等多种IT领域的知识点。例如,利用计算机视觉技术结合图像处理和机器学习算法,对视频帧序列进行分析,来检测和分类特定的行为;运用行为识别算法,如深度学习中的卷积神经网络(CNN)和递归神经网络(RNN),通过训练模型来识别和分类不同的行为。原创 2025-04-09 10:39:23 · 791 阅读 · 1 评论 -
【毕设课设系列】基于深度学习实现多位手写数字识别系统准确率达99.3%(附源码+数据集+识别效果展示+运行教程)
我们的目标是构建一个系统,能够识别包含多个手写数字的图像(例如,图像中可能包含两个或更多的手写数字)。数据准备:获取并预处理包含多位手写数字的数据集。模型构建:使用深度学习框架(如TensorFlow或PyTorch)构建卷积神经网络模型。模型训练:训练模型以识别手写数字。模型评估:评估模型的性能。模型应用:使用训练好的模型进行预测。原创 2025-03-14 16:13:00 · 860 阅读 · 4 评论 -
基于Jetson Nano的并行图像滤波算法优化与部署
我们实现了基于 GPU (CUDA) 和 CPU (PThread) 的卷积算法,在此基础之上,我们进一步实现 Sobel、Laplacian、均值和高斯滤波器,它们可以被用于图像处理,一个典型的应用场景就是图像降噪。因此,我们的实验内容主要围绕这些滤波器在图像降噪上效果和它们在Jetson Nano 上的性能表现展开。我们分别从两个角度对这些滤波器进行上层封装,即实验角度和部署角度。既然谈到部署,当然不能局限于人工输入图像,因此,我们加入了摄像头。原创 2023-09-04 17:55:30 · 500 阅读 · 0 评论 -
基于YOLOv8+PyQt5实现的共享自行车识别检测系统,含数据集+模型+精美GUI界面(可用于违规停放检测告警项目)
基于YOLOv8共享自行车违规停放检测项目,一般用于智慧城市,智慧交通智能摄像头上。实现该项目主要分三步。第一步,训练检测自行车的模型,使用YOLOv8识别检测出自行车,得到自行车的在画面中的坐标信息(x1,y1,x2,y2);第二步手动设定停放区,可以是不规则多边形,也可以是矩形(后面判断简单些),其中区域也可以使用关键点坐标来表示;第三步,通过区域相交算法或者其他算法来判断目标框是否与划定区域有相交重叠,矩形相交可以看我这篇【深度学习笔记】目标检测之区域入侵判断代码提示:以下是本篇文章正文内容。原创 2023-09-04 14:02:42 · 3885 阅读 · 6 评论 -
基于YOLOv8+PyQt5开发的行人过马路危险行为检测告警系统(附数据集和源码下载)
交通安全一直是一个备受关注的重要议题。每年都有大量的交通事故发生,其中很多都与行人在过马路时的危险行为有关。故我开发了一种基于YOLOv8的行人过马路危险行为检测告警系统。它能够快速准确地识别图像或视频中的行人,并判断他们是否存在危险行为。通过结合计算机视觉和深度学习技术,该系统能够实时监测行人在过马路时的行为,并及时发出警报,以提醒行人和驾驶员注意交通安全。提示:以下是本篇文章正文内容在本博客中,我们介绍了基于YOLOv8和PyQt5的行人过马路危险行为检测告警系统。原创 2023-08-13 10:00:00 · 5383 阅读 · 5 评论 -
基于Vision Transformer的图像去雾算法研究与实现(附源码)
基于Vision Transformer的图像去雾算法研究与实现原创 2023-03-13 13:42:44 · 4588 阅读 · 6 评论 -
一种基于加密域的数字图像水印算法的设计与实现(附Matlab源码)
随着人们对版权意识的不断提高,在未来几年内,数字媒体作品的版权保护也会得到越来越多的重视。数字水印技术是解决数字产品版权保护问题的有效手段之一,尽管数字水印技术在这几年里有了快速的发展,但它仍然有许多问题有待解决。由于信息社会中信息安全和数字水印版权保护的必要性,在某些领域,基于加密域的数字图像水印算法得到了极大的发展。比如说,在一些对于安全性要求较高的领域,任何微小的安全问题都会导致整个系统的崩溃,从而影响到整个全局战略。原创 2023-02-15 11:23:00 · 1889 阅读 · 0 评论 -
基于显著性目标检测的非特定类别图像分割实现以及部署过程(附源码+数据集)
将pytorch下训练得到的pth模型,转为onnx模型,使用OpenCV中的dnn模块加载进行推理(其中对OpenCV进行重新编译,加入CUDA加速处理相关依赖,时间从1800ms左右,降到了120ms左右,在i5-7400 CPU @ 3.00GHz + 1050Ti的主机上)。修改后的模型初始化参数:训练三十几轮(每轮2000次迭代)从0.44左右降到0.06左右,十几轮就已经降到了0.1左右。在两张1080 TI上训练,批次大小(batch size)设置为16,每迭代2000次,保存一次模型,原创 2023-01-10 18:30:54 · 1261 阅读 · 0 评论 -
适合rv1109+rv1126使用基于RKmedia的人脸和车牌识别的SDK及使用介绍说明
若比对底库是由正常条件下的人脸身份信息构造的人脸识别场景(含 1:1 和 1:N),对于人脸识别的余弦相似度,我们建议将相似度阈值设为 89 分;门禁场景中,比对底库是由正常条件下的人脸身份信息构造的人脸识别场景(含 1:1 和 1:N),对于人脸识别的相似度,我们建议将相似度阈值设为 89 分,即超过 89 分的刷脸行为认为是本人,允许放行,即。需要注意的是,由于 RKMedia 的 RGA 库的限制,输入图片的长、宽需为4的整数倍,否则。门禁场景中,建议将人脸质量分数的阈值设为 80 分,即。原创 2022-12-13 11:37:48 · 4052 阅读 · 5 评论 -
基于opencv传统数字图像处理实现车道线检测详细过程(附源码)
实验过程中尝试了很多方案,如采用形态学运算,提高车道线的完整性;通过阈值分割,去除背景和干扰物;采用均值作为聚类中心等。由于方案设计上的主观缺陷和检测任务的存在的光照不均、环境复杂等客观因素,以上方案均被舍弃。最终经过实践得到了一种鲁棒性较好,效果较优的车道线检测方案。通过查阅相关资料,我了解到更多车道线检测的改进算法,例如可以通过最大类间方差法(OTSU)进行阈值分割、动态ROI区域等。可以通过以上算法进一步提高模型精度和性能。原创 2022-12-13 11:09:15 · 4275 阅读 · 1 评论 -
softmax原理性质解析并python实现
对于k维向量z来说,其中zi∈Rzi∈R,我们使用指数函数变换可以将元素的取值范围变换到(0,+∞)(0,+∞),之后我们再所有元素求和将结果缩放到[0,1],形成概率分布。所以我们在函数实现时利用其性质:先对输入数据进行处理,之后再利用计算公式计算。Softmax函数用于将分类结果归一化,形成一个概率分布。作用类似于二分类中的Sigmoid函数。常见的其他归一化方法,如max-min、z-score方法并不能保证各个元素为正,且和为1。对于一个k维向量z,我们想把这个结果转换为一个k个类别的概率分布。原创 2022-12-12 22:17:19 · 1381 阅读 · 0 评论 -
【ML-SVM案例学习】svm实现手写数字识别
【ML-SVM案例学习】会有十种SVM案例,供大家用来学习。本章实现svm实现手写数字识别。提示:以下是本篇文章正文内容,下面案例可供参考以上就是今天要讲的内容,本文仅仅简单介绍了svm实现手写数字识别,仅供参考学习。原创 2022-11-22 23:15:17 · 2073 阅读 · 0 评论 -
【ML-SVM案例学习】SVM多目标属性分类问题
【ML-SVM案例学习】会有十种SVM案例,供大家用来学习。本章实现SVM多目标属性分类问题。提示:以下是本篇文章正文内容,下面案例可供参考以上就是今天要讲的内容,本文仅仅简单介绍了SVM多目标属性分类问题,仅供参考学习。原创 2022-11-21 22:23:22 · 672 阅读 · 0 评论 -
【ML-SVM案例学习】不同SVM核函数效果比较
【ML-SVM案例学习】会有十种SVM案例,供大家用来学习。本章实现不同SVM核函数效果比较。提示:以下是本篇文章正文内容,下面案例可供参考以上就是今天要讲的内容,本文仅仅简单介绍了不同SVM核函数效果比较.原创 2022-11-21 22:16:34 · 903 阅读 · 0 评论 -
【ML-SVM案例学习】案例一:不同分类器对鸢尾花数据的分类效果(附源码)
【ML-SVM案例学习】会有十种SVM案例,供大家用来学习。本章实现SVM鸢尾花数据的分类任务。以上就是今天要讲的内容,本文仅仅简单介绍了不同分类器对鸢尾花数据的分类效果,下一章将介绍03_案例三:不同SVM核函数效果比较。原创 2022-11-18 21:27:17 · 1127 阅读 · 1 评论 -
【ML-SVM案例学习】案例一:对鸢尾花数据进行SVM分类(附源码)
【ML-SVM案例学习】会有十种SVM案例,供大家用来学习。本章实现SVM鸢尾花数据的分类任务。提示:这里对文章进行总结:以上就是今天要讲的内容,本文仅仅简单介绍了鸢尾花数据进行SVM分类,下一章将介绍02_案例二:鸢尾花数据不同分类器效果比较。原创 2022-11-18 21:09:57 · 3779 阅读 · 0 评论 -
【ML-SVM案例学习】003梯度下降之拉格朗日乘子法
【ML-SVM案例】会有十种SVM案例,供大家用来学习。本文只是实现梯度下降:拉格乘子法。提示:以下是本篇文章正文内容,下面案例可供参考一维图像与二维图像求解最优解。原创 2022-11-17 22:48:59 · 881 阅读 · 0 评论 -
【ML-SVM案例学习】002梯度下降之求解最优解
【ML-SVM案例】会有十种SVM案例,供大家用来学习。本文只是实现梯度下降,求解最优解。后面一章将会实现003梯度下降:拉格乘子法。提示:以下是本篇文章正文内容,下面案例可供参考一维和二维图像003梯度下降:拉格乘子法。原创 2022-11-17 22:38:55 · 1103 阅读 · 0 评论 -
【ML-SVM案例学习】001梯度下降之一维和二维图像
【ML-SVM案例】会有十种SVM案例,供大家用来学习。本文只是预先做个一维图像与二维图像数据构建及绘图。后面两章将会实现“002梯度下降:求解最优解“和“003梯度下降:拉格乘子法“。文章末尾有链接。提示:以下是本篇文章正文内容,下面案例可供参考002梯度下降:求解最优解003梯度下降:拉格乘子法。原创 2022-11-17 08:09:17 · 846 阅读 · 0 评论 -
高空抛物检测方案设计(使用SOM进行轨迹分类)
高空抛物检测的关键是方案的设计,以及方案的稳定性,如何排除干扰、排除误报,不可能就通过一个算法就能让产品稳定落地应用,需要不断打磨。该项目主要实现了对于布署在住宅小区中的高空抛物事件的检测。且目前作为一款实际的产品,故在此不贴出实现的检测代码,只大致描述一下所采用的技术方案与实际的检测效果。仅供学习参考。提示:以下是本篇文章正文内容,下面案例可供参考1、对视频流的抽帧并解码;2、高斯混合背景建模法建立背景模型,据此获取运动前景;3、通过卡尔曼滤波完成运动目标跟踪,并记录运动轨迹;原创 2022-11-16 23:15:10 · 2403 阅读 · 2 评论 -
图像增强及运算篇之图像掩膜直方图和HS直方图
本章主要讲解图像直方图相关知识点,包括掩膜直方图和HS直方图,并通过直方图判断黑夜与白天,通过案例分享直方图的实际应用。希望对您有所帮助,后续将进入图像增强相关知识点。(By:Eastmount 2022-08-16 夜于武汉)[1]冈萨雷斯. 数字图像处理(第3版)[M]. 北京:电子工业出版社, 2013.[2]张恒博, 欧宗瑛. 一种基于色彩和灰度直方图的图像检索方法[J]. 计算机工程, 2004.转载 2022-11-15 22:45:03 · 971 阅读 · 0 评论 -
python-opencv高级形态学处理—边缘—凸包
图像的形态学处理有很多种,其中凸包处理是一种比较常见的高级方法,其主要原理是:生成一个凸多边形,这个凸多边形将图片中所有的白色像素点都包含在内的运算。Python中有相应的实现方法。形态学处理,除了最基本的膨胀、腐蚀、开/闭运算、黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等。形态学目的如下:图像预处理(去噪声,简化形状)增强物体结构(抽取骨骼,细化,粗化,凸包,物体标记)从背景中分隔物体物体量化描述(面积,周长,投影,Euler-Poincare特征)原创 2022-11-15 22:38:04 · 1813 阅读 · 0 评论 -
opencv图像处理几种常见滤波器实现
多种滤波器在图像处理中实现。原创 2022-11-15 22:18:52 · 2139 阅读 · 0 评论 -
Python重要知识点filter_map_partial_reduce_sorted内置函数的使用方法
在很多深度学习项目中,python知识点中,关于filter() map() partial() reduce() sorted()的使用很常见,所以在此对python的这些知识点做一温故并总结。提示:以下是本篇文章正文内容,下面案例可供参考以上就是今天要讲的内容,大概记录了filter()map() reduce() sorted()函数的语法及用法,并提供了简单容易理解的例子供参考,后续会不定期更新记录学习知识点。原创 2022-11-14 22:52:20 · 785 阅读 · 0 评论 -
python批量合并两个voc标签格式的数据集
做深度学习项目时,不同的项目需要不同标签的数据集。譬如有两个数据集的图片数据是相同的,其中一个数据集标签是人脸(用于人脸检测),另外一个数据集标签是张嘴、闭嘴(用于检测是否打哈欠),这时,由于某些原因,我们想该数据集训练完后,既能检测人脸,又能检测打哈欠。一种就是笨办法,在打哈欠数据集中把人脸标签标注进去;另一方法就是本文将要介绍的,通过python脚本程序,合并两个数据集的xml文件。提示:以下是本篇文章正文内容,下面案例可供参考。原创 2022-11-14 22:12:26 · 1299 阅读 · 0 评论 -
python简单实现经典的图像匹配算法SIFT
成像匹配的核心问题是将同一目标在不同时间、不同分辨率、不同光照、不同位姿情况下所成的像相对应。传统的匹配算法往往是直接提取角点或边缘,对环境的适应能力较差,急需提出一种鲁棒性强、能够适应不同光照、不同位姿等情况下能够有效识别目标的方法。原创 2022-11-12 08:11:33 · 4311 阅读 · 0 评论 -
python+opencv实现canny边缘检测
【代码】python+opencv实现canny边缘检测。原创 2022-11-11 22:25:47 · 1195 阅读 · 0 评论 -
小目标检测方法介绍
目标检测发展很快,但对于的检测还是有一定的瓶颈,特别是。比如79202160,甚至1600016000的图像,还有一些。图像的分辨率很大,但又有很多小的目标需要检测。但是如果直接输入检测网络,比如yolo,检出效果并不好。转载 2022-11-11 21:04:48 · 1899 阅读 · 0 评论 -
分水岭算法实现岩石分割
分水岭算法是一种图像区域分割法,在分割的过程中,他会把临近像素之间的相似性作为重要的参考依据,从而在空间位置上相近并且灰度值相近的像素点相互连接起来构成一个封闭的轮廓。分水岭算法的常用操作步骤:先彩色图像灰度化,然后再求得梯度图,最后在梯度图的基础上进行分水岭算法,求得分段图像的边缘线。本文将从代码角度拆分还原操作步骤。原创 2022-11-09 22:42:59 · 1823 阅读 · 0 评论 -
目标检测跟踪算法--传统方法
通过上面的两节的介绍,我们不难发现,目标检测算法的步骤分为两部分,一部分是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一部分是对目标特征进行跟踪,如上文所提及的方法。可以有如下总结,ViBe中的每一个像素点在更新的时候都有一个时间和空间上随机影响的范围,这个范围很小,大概3x3的样子,这个是考虑到摄像头抖动时会有坐标的轻微来回变化,这样虽然由于ViBe的判别方式仍认为是背景点,但是也会对后面的判别产生影响,为了保证空间的连续性,随机更新减少了这个影响。论文里使用的是后一种方法。转载 2022-11-08 22:28:09 · 3256 阅读 · 0 评论 -
卡尔曼滤波在多目标跟踪算法中应用详解
总的来说,卡尔曼滤波器是一个状态估计器,它利用传感器融合、信息融合来提高系统的精度。通常,我们要观测一个系统的状态,有两种手段。一种是通过系统的状态转移方程,并结合上一时刻的状态推得下一时刻的状态。一种是借助 辅助系统(量测系统) 的测量得到系统状态。这两种方式都有各自的不确定性,卡尔曼滤波可以将这两者做到最优结合(加权平均),使得我们估计的状态的不确定性小于其中任何一种。所以权重的选择至关重要,它意味着我们更信任哪一种方式得出的状态(当然是更加信任不确定性较小的状态)。转载 2022-11-08 22:22:43 · 2684 阅读 · 0 评论 -
基于opencv的手指静脉识别(附源码)
手指静脉识别技术是一种新的生物特征识别技术,它利用手指内的静脉分布图像来进行身份识别。工作原理是依据人类手指中流动的血液可吸收特定波长的光线,而使用特定波长光线对手指进行照射,可得到手指静脉的清晰图像。利用这一固有的科学特征,将实现对获取的影像进行分析、处理,从而得到手指静脉的生物特征,再将得到的手指静脉特征信息与事先注册的手指静脉特征进行比对,从而确认登录者的身份。本文利用OpenCV各种图像算法实现对手指静脉进行识别,使用传统的方法来处理图像,而不是深度学习方法。原创 2022-11-07 23:26:36 · 4074 阅读 · 0 评论 -
OpenCV实现手套表面缺陷检测
PVC手套是一款以聚氯乙烯为主原料的手套产品,具有防静电的性能。在许多行业内都会用到,例如电子制造业、药品制造业、化工业、农业等等,运用非常广泛。在PVC手套的生产过程中,会出现有一些质量问题,如粘上油污、蚊虫等情况,这个时候需要将不良品检测出来,以确保供给客户的产品是100%合格。为了检测手套表面缺陷,本文使用OpenCV传统图像处理方法检测出手套表面缺陷。提示:以下是本篇文章正文内容,下面案例可供参考。原创 2022-11-07 22:50:56 · 2861 阅读 · 4 评论 -
OpenCV应用项目——零部件的自动光学检测
多窗口展示背景去除连通图的实现轮廓边缘检测并且在实际的C++代码中,还涉及了智能指针等高阶知识;工业质检项目作为视觉领域较为成熟的落地项目,其大部分都是基于深度学习的方式实现了,但如果能掌握一些OpenCV的方法,也可以在项目中起到优化效果的作用;转载 2022-11-07 21:55:22 · 1211 阅读 · 0 评论 -
OpenCV图像处理常用算法
该算子功能比前面几种都要好,但是它实现起来较为麻烦,Canny算子是一个具有滤波,增强,检测的多阶段的优化算子,在进行处理前,Canny算子先利用高斯平滑滤波器来平滑图像以除去噪声,Canny分割算法采用一阶偏导的有限差分来计算梯度幅值和方向,在处理过程中,Canny算子还将经过一个非极大值抑制的过程,最后Canny算子还采用两个阈值来连接边缘。高斯滤波器是一种线性滤波器,其卷积模板中的系数随着与模板中心的距离增大而减小,相比于均值滤波器,高斯滤波器对整个图像模糊程度较小,能够有效抑制噪声,平滑图像。转载 2022-11-07 21:44:55 · 3338 阅读 · 0 评论 -
Transformer 中的 Encoder 机制
因此将特征序列表示为 [[1, 1, 0, 0], [1, 1, 1, 1]],其 shape=[2, 4],见下面的第二个矩阵,如:src_seq = [[6, 4, 0, 0], [6, 4, 1, 7]] 中,第一个单词 6 用向量 [-0.9194, 0.3338, 0.7215, -1.2306, 0.9512, -0.1863] 来表示。# [tensor([4, 2, 1, 3]), tensor([6, 5, 1])] # 目标特征,第一个句子有4个单词,第二个句子有3个单词。转载 2022-11-07 21:34:38 · 905 阅读 · 0 评论 -
【深度学习笔记】CenterNet源码解析
这篇文章主要就是介绍centernet源码中一些用到的重要的函数,帮助大家理解学习!转载 2022-11-04 23:47:24 · 919 阅读 · 2 评论 -
改进YOLOv7算法蝴蝶识别检测源码教程
并在 V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。转载 2022-11-01 16:36:35 · 652 阅读 · 0 评论 -
100种目标检测数据集【voc格式yolo格式json格式coco格式】+YOLO系列算法源码及训练好的模型
本文介绍并分享了应用于各行业、各领域非常有用的目标检测数据集(感谢您的关注+三连,数据集持续更新中…),其中绝大部分数据集作者已应用于各种实际落地项目,数据集整体质量好,标注精确,数据的多样性充分,训练模型拟合较好,具有较高的研究和使用价值,各数据集都有下载链接及作者训练好的模型+源码下载链接,同时也有对应的检测效果视频,请放心下载~【实际项目应用】:阳光厨房、明厨亮灶智能监控方案【数据集说明】:老鼠检测数据集已更新到2018张,图片包含有白天和黑夜老鼠出没照片,标签包含voc(xml)和yolo格式原创 2022-10-12 21:32:27 · 24926 阅读 · 33 评论